
Cryptographic Foundations of
Modern Stateful and Continuous

Key Exchange Primitives

Paul Christoph Rösler

Ruhr University Bochum
Horst Görtz Institute for IT-Security
Chair for Network and Data Security

Dissertation zur Erlangung des Grades eines
Doktor-Ingenieurs der Fakultät für Elektrotechnik
und Informationstechnik an der Ruhr-Universität

Bochum

Cryptographic Foundations of Modern
Stateful and Continuous Key

Exchange Primitives

Paul Christoph Rösler
Place of birth: Arnsberg Neheim, Germany

Email: paul.roesler@rub.de
ORCID: 0000-0002-2324-5671

March 11, 2021
Date of Defense: February 5, 2021

Ruhr University Bochum
Horst Görtz Institute for IT-Security
Chair for Network and Data Security

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der
Fakultät für Elektrotechnik und Informationstechnik an der

Ruhr-Universität Bochum

First Referee: Prof. Dr. rer. nat. Jörg Schwenk
Second Referee: Prof. Dr. phil. nat. Marc Fischlin

nds.rub.de

mailto://paul.roesler@rub.de
http://orcid.org/0000-0002-2324-5671
https://nds.rub.de

Acknowledgments

I am convinced that it is very reasonable for researchers to assume
full causality in this universe. By this, I mean that every event in
this universe is the (causal) result of a process that is initiated under
certain circumstances. (These circumstances are again events, deter-
mined through processes under their influencing circumstances, and
so on). Therefore, I believe that I am (only) the result of the influ-
ences that let me become who I am today. Since I enjoyed the process
of working on this thesis and I am grateful about the event of being
rewarded with a Ph.D., I want to thank all my significant influences
in the following, who constituted the circumstances under which this
was possible.
First and foremost, I want to thank my fiance, my family, and my

friends for their endless mental support. Thank you, Nadine, for your
patience, for being there when I needed you, for leaving me alone
when I was busy, for believing in me, for your love, and for planning
your future with me. Thank you Mama, Papa, and Karl for laying the
foundations of my academic career path, for setting me an example
of being interested, curious, enthusiastic, and precise, and for letting
me know that I can always rely on you. The success of my research
also crucially bases on my prior studies of IT security with the best
study group one could imagine. Thank you Dennis, Dennis, Eduard,
Fabian, Jan, Jannik, Nils, Philip, and Philipp for jointly exploring
adversaries, cryptography, and Bochum’s nightlife.
By giving me time, space, a collaborative environment, money, and

freedom, Jörg provided everything I needed for using my initial knowl-
edge to investigate cryptographic problems that I found interesting.
Thank you very much, Jörg, for letting me do what I considered
promising and letting me go where I expected synergies without set-
ting any boundaries. I believe your supervision approach ideally led
me to where a Ph.D. student wants to be after their graduation.
I am also thankful to those who connected me to the international

cryptography community. Special thanks goes to my second super-
visor, Eike, with whom I could discuss future career plans and who

introduced me to my favorite co-author Bertram. Which brings me to
Bertram, who taught me so many different lessons during my Ph.D.
that I cannot mention all: Thank you, Bertram, for all the discussions
about the literature on key exchange and cryptographic modeling in
general, for inviting me to London and bringing me into contact with
many members of our research community, for teaching me precision
and showing me how to avoid arbitrariness, and for being pedantic
about how to use LATEX.
The great research environment that Jörg established was primar-

ily constituted by my colleagues—foremost by my office mate Robert.
I am so grateful about all our political, philosophical, and technical
discussion that echoed through the hallway such that all colleagues
were able to participate passively, about our Friday afternoons dur-
ing which we reviewed the latest hip-hop releases with a bottle of
beer, about our mutual success with which we motivated each other,
and I am looking forward to eventually joining RWC in Amsterdam
with you next year. My time at the Chair for Network and Data Se-
curity wouldn’t have started without Christian’s and Martin’s great
supervision of my bachelor thesis after which they invited me to work
more closely with this group. During my work, Petra’s hidden but
significant support helped me to focus on the things I wanted to do.
Similarly, by managing our technical and organizational infrastruc-
ture, and helping out whenever it was needed, Dennis made my re-
searcher life far easier. Having Sebastian as the second member of our
two-persons-theory-minority-subgroup was a real pleasure: I am glad
that we jointly organized our (almost) own lecture on key exchange
and were able to share and discuss crypto related ideas. I also very
much appreciated spending my spare time with Vladislav and Juraj.
Beyond learning what being postdoc means in practice and how post-
docs plan their careers, I enjoyed solving boulder problems with you
instead of thinking about work. Although I do not provide further
details, I am equally thankful that I had the opportunity to working
with you, Dominik, Jens, Lukas, Marcel, Marcus, Marcus, Matthias,
and Simon. In addition to this, I want to thank Pascal and Tibor for
our very interesting and pleasant research cooperation.

During my studies, I was fortunate to being invited by Bertram,
Serge, Kenny, and Yevgeniy to their groups for collaborations. Ev-
ery one of you was a great host to me and I am so glad that I had
the chance to think, discuss, and do research with you. For doing
joint research, structuring work, formulating results, and exploring
cryptography, I am deeply thankful to all of my co-authors, especially
Alexander, Benjamin, and Fatih, who expended enormous efforts with
me to finalize our papers. Last but not least, I want to thank Marc
for accepting to review my thesis and assessing my defense. I am very
happy that I am able to work with you now.

Abstract

Protecting communication cryptographically is usually considered and
realized modularly: Protocols for protecting the actual payload utilize
session keys that are exchanged by other (independent) protocols. Key
exchange protocols, securely establishing session keys between autho-
rized parties such that outsiders cannot compute these keys, are one
of the most fundamental primitives in cryptography. We consider in
this thesis modern key exchange protocols that continuously establish
new session keys for involved parties. Furthermore, we concentrate
on techniques, often implemented in these protocols, that steadily up-
date secrets used by the involved parties while establishing session
keys. These update mechanisms are applied to protect session keys
against adversaries who can temporarily expose parties’ local state
memory on which these secrets are stored. Realistic examples that il-
lustrate this adversarial capability include physical access to victims’
devices, computer viruses on these devices, implementation flaws in
the affected software, etc. For updating the current state secrets of
parties, freshly generated secrets are steadily mixed into the state, and
old secrets are simultaneously erased from it. These update mecha-
nisms, metaphorically called ratcheting, were developed for modern
messaging protocols and are today deployed in all relevant messaging
applications; Similar techniques are also implemented in traditional
group key exchange protocols. In order to provide methodical and
systematic foundations that facilitate access to these mechanisms for
academic research, we conceptually and fundamentally rethink their
modeling and realization.
With our consideration of two-party ratcheting (i.e., continuous key

exchange under steady updates of secrets), we are the first to propose
a natural security definition that takes realistic interaction between
parties into account. We divide our notions of interaction into three
incremental stages to reduce complexity due to entailed concurrent
and asynchronous communication. Thereby, our results reveal core
elements of ratcheting in our definitions as well as in our accordingly
secure constructions.

Some of these constructions are built from remarkably strong cryp-
tographic building blocks. In our analysis of reasons for this, we
prove that these strong building blocks are under practical conditions
necessary to build ratcheting, crystallizing them as core components
thereof. As part of this analysis, we introduce a natural security no-
tion of ratcheting that takes the vulnerability of utilized random coins
appropriately into account.
We subsequently turn to concurrency as a crucial problem of ratch-

eting in groups. More precisely, we analyze the communication over-
head that results from multiple group members concurrently updating
the secrets in their local states. Previous group ratcheting protocols
only allow for sequential state updates, causing a significant efficiency
loss for practical deployment. We prove almost tight lower and upper
bounds of communication complexity. In doing so, we reveal theoret-
ical performance limits and provide a practical scheme for concurrent
group ratcheting.
Finally, we more generally examine modeling for group key ex-

change. While group key exchange has a long tradition in cryptog-
raphy, its modeling also becomes increasingly relevant due to the ad-
vent of group ratcheting. We systematically review, compare, and
evaluate all relevant models in the literature. In order to resolve cor-
respondingly detected issues and shortcomings, we propose a simple
and generic model, which may serve as a foundation for future mod-
eling attempts.
Conclusively, the results of this thesis comprise systematic models

and constructions that are directly related to modern means of com-
munication. Furthermore, we reveal relations between various cryp-
tographic primitives and determine corresponding performance limi-
tations. Various methodologies and solutions developed in this thesis
(re-)structure the current state of research on continuous and stateful
key exchange. Due to their generic nature, many of our results can be
useful in applications and extensions far beyond the specific problems,
covered in this thesis.

Zusammenfassung

Geschützte Kommunikation wird in der Kryptographie üblicherweise
modular betrachtet und realisiert: Die Protokolle zur Sicherung der
eigentlichen Kommunikation verwenden Sitzungsschlüssel, die von an-
deren (unabhängigen) Protokollen ausgetauscht werden. Schlüsselaus-
tauschprotokolle, die das sichere Austauschen von Sitzungsschlüsseln
zwischen autorisierten Parteien ermöglichen, sodass außenstehende
Parteien diese Schlüssel nicht berechnen können, sind eine der funda-
mentalsten Primitiven in der Kryptographie. Im Fokus der Betrach-
tung dieser Dissertation liegen sowohl moderne Schlüsselaustauschpro-
tokolle, die kontinuierlich neue Sitzungsschlüssel zwischen involvierten
Parteien austauschen, als auch darin häufig verbaute Techniken, die
die dafür verwendeten Geheimnisse der Parteien stetig erneuern. Dieses
Erneuern der Geheimnisse soll ausgetauschte Sitzungsschlüssel vor
Angriffen schützen, bei denen Angreifern zeitlich beschränkter Zugriff
auf den Zustandsspeicher der Parteien, der jene verwendete Geheim-
nisse enthält, möglich ist. Realistische Beispiele, die diese Angriffs-
fähigkeit veranschaulichen, umfassen physischen Zugriff auf Geräte der
Opfer, Computerviren auf diesen Geräten, Implementierungsfehler in
betroffener Software, etc. Für das Erneuern werden stetig neu gener-
ierte Geheimnisse in den aktuellen Zustand gemischt und gleichzeitig
alte Geheimnisse daraus entfernt. Diese Erneuerungstechniken, die
metaphorisch Ratcheting (engl. ‘Ratcheting’ = ‘Ratschen’) genannt
werden, wurden für moderne Messengerprotokolle entwickelt und sind
in fast allen aktuell relevanten Messengerdiensten verbaut; Ähnliche
Mechanismen finden sich darüber hinaus auch in traditionellen Grup-
penschlüsselaustauschverfahren. Um der Forschung methodischen und
systematischen Zugang zu diesen Techniken zu verschaffen, konzen-
trieren sich die Arbeiten im Rahmen dieser Dissertation darauf, sie
konzeptionell und grundsätzlich neu zu erfassen, zu modellieren und
zu realisieren.
Für das zunächst betrachtete Zwei-Parteien-Ratcheting—also dem

kontinuierlichen Austausch von Sitzungsschlüsseln bei gleichzeitig ste-
tigem Erneuern verwendeter Geheimnisse—wird in der vorliegenden

Arbeit die erste natürliche Sicherheitsdefinition vorgestellt. Diese Def-
inition trägt in drei aufeinanderfolgenden Stufen realistischer Interak-
tivität, und damit simultaner und asynchroner Kommunikation, zwi-
schen den involvierten Parteien Rechnung. Die stufenweise Betra-
chtung der Interaktivität ermöglicht zum einen eine klarere Darstel-
lung der Ergebnisse und deckt zum anderen wesentliche Bestandteile
des Ratchetings in den Definitionen und auch in den vorgelegten,
entsprechend sicheren, Konstruktionen auf.
Darauffolgend wird die Verwendung auffällig starker kryptographis-

cher Komponenten in diesen Konstruktionen analysiert. Es werden
praktische Bedingungen vorgestellt, unter denen diese mächtigen Kom-
ponenten beweisbar notwendig sind um Ratcheting zu konstruieren,
wodurch sich diese Komponenten als Kernstück natürlich sicheren
Ratchetings herauskristallisieren. Im Rahmen dieser Analyse wird
außerdem eine natürliche Sicherheitsdefinition für Ratcheting einge-
führt, die die Schwächung verwendeter Zufallszahlen angemessen be-
rücksichtigt.
Anschließend wird ein wesentliches Problem für Ratcheting in Grup-

pen betrachtet: es wird der Kommunikationsaufwand untersucht, der
verursacht wird, wenn mehrere Gruppenmitglieder gleichzeitig Ge-
heimnisse erneuern. Bisherige Verfahren ermöglichen nur sequenzielles
Erneuern von Geheimnissen, was zu signifikanten Effizienzeinbußen in
der Praxis führt. Es werden enge untere und obere Schranken des
verursachten Kommunikationsaufwands bewiesen, woraus zum einen
theoretische Grenzen der Performanz und zum anderen ein praktisches
Verfahren für Gruppenratcheting hervorgehen.
Genereller wird abschließend die Modellierung von Gruppenschlüssel-

austauschverfahren betrachtet, die eine lange Tradition in der Kryp-
tographie hat, aber auch aktuell Relevanz durch das aufkommende
Gruppenratcheting erfährt. Systematisch werden Eigenschaften aller
relevanten Modelle in der Literatur begutachtet und verglichen. Um
dabei offengelegte Probleme und Unzulänglichkeiten zu überwinden,
wird ein simples, generisches Modell vorgeschlagen, womit zukünftiger
Forschung eine Modellierungsgrundlage geboten wird.
Die Ergebnisse dieser Dissertation umfassen dementsprechend neue,

systematische Modellierungen und Konstruktionen, die direkten Bezug
zu modernen Kommunikationsmedien haben. Des Weiteren werden
Relationen zwischen verschiedenen kryptographischen Primitiven her-
gestellt, sowie Effizienzschranken festgestellt. Viele der entwickelten
Methoden und Lösungen (re-)strukturieren den aktuellen Forschungs-
stand zu kontinuierlichem und zustandsbehaftetem Schlüsselaustausch.
Durch ihren generischen Charakter können diese Ergebnisse weit über
die speziellen Probleme, die diese Dissertation behandelt, Anwendung
und Erweiterung finden.

Contents

1 Introduction 1
1.1 Secure Messaging between Endpoints 3
1.2 Ratcheting . 7
1.3 The Group Setting . 12
1.4 Further Contributions 16
1.5 Organization . 19

2 Preliminaries 21
2.1 Cryptographic Modeling 21
2.2 Notation . 24
2.3 Cryptographic Building Blocks 26

3 Optimally Secure Ratcheting in Two-Party Settings 39
3.1 Introduction . 41
3.2 Key-updatable Key Encapsulation Mechanisms 47
3.3 Unidirectionally ratcheted key exchange (URKE) . . . 51
3.4 Constructing URKE 57
3.5 Sesquidirectionally ratcheted key exchange (SRKE) . . 60
3.6 Constructing SRKE 66
3.7 Rationales for SRKE Design 72
3.8 Bidirectionally ratcheted key exchange (BRKE) 78
3.9 Constructing BRKE 80
3.10 Proof of URKE . 86
3.11 Proof of SRKE . 95
3.12 Proof of BRKE . 113
3.13 Modeling ratcheted key exchange 117

4 Necessity of Strong Building Blocks for Optimally
Secure Ratcheting 121
4.1 Introduction . 122
4.2 Sufficient Security for Key-Updatable KEM 130
4.3 Unidirectional RKE under Randomness Manipulation 138

i

Contents

4.4 kuKEM* to URKE . 144
4.5 URKE to kuKEM* . 149
4.6 Discussion . 161

5 Communication Costs of Ratcheting in Groups 167
5.1 Introduction . 168
5.2 Security of Concurrent Group Ratcheting 176
5.3 Deficiencies of Existing Protocols 179
5.4 Key-Updatable Public Key Encryption 185
5.5 Intuition for Lower Bound 186
5.6 Upper Bound of Communication Complexity 194
5.7 Lower Bound of Communication Complexity 202
5.8 Discussion . 227

6 Systematization of Models for Key Exchange in Groups231
6.1 Introduction . 232
6.2 Syntax Definitions . 237
6.3 Communication Models 248
6.4 Security Definitions . 262
6.5 Discussion . 271

7 Conclusions and Outlook 275
7.1 Overview . 275
7.2 Statefulness . 278
7.3 Defining Syntax, Correctness, and Security 279
7.4 Continuous State Updates 280
7.5 Asynchronicity . 282
7.6 Two Perspectives on Problems 283
7.7 Impact . 284

ii

1
Introduction

Our research on the cryptographic primitives, covered in this thesis, is
substantially motivated by their use in modern real-world messaging
applications. The common technique that all these primitives imple-
ment are mechanisms to continuously update employed key material.
We consider these key-updating mechanisms from various perspectives
in order to derive a clearer, systematic understanding thereof. Before
switching to a more research-oriented and technical perspective in this
introduction, we will first take a look at the short history of modern
secure messaging.

With the market introduction of smartphones and the emerging ac-
cessibility of mobile Internet, the advent of messaging applications was
initiated in the late 2000s. For example, WhatsApp, being the most
widely used messaging application worldwide today1, was launched in
2009.2 Less used, alternative messengers like TextSecure from early
on incorporated into their consideration adversaries and, therefore,
implemented encryption mechanisms. Conceptually, the first avail-
able version of TextSecure from 20113 encrypted payload messages on
the sender device, transmitted the resulting ciphertexts via SMS to
the receiver, and let the receiver decrypt the ciphertexts to obtain the
sent messages. Many messengers like Telegram or Threema followed
this end-to-end encryption concept.

An early feature of TextSecure was implementing continuous key-
1https://www.statista.com/statistics/258749/most-popular-global-

mobile-messenger-apps/
2WhatsApp 2.0 announcement from 2009-08-27: https://blog.whatsapp.com/

whats-app-2-0-is-submitted
3Initial commit from 2011-12-20: https://github.com/signalapp/Signal-

Android/tree/bbea3fe1b110afadbac4d6a2c183dc4d899e4ead

1

https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://blog.whatsapp.com/whats-app-2-0-is-submitted
https://blog.whatsapp.com/whats-app-2-0-is-submitted
https://github.com/signalapp/Signal-Android/tree/bbea3fe1b110afadbac4d6a2c183dc4d899e4ead
https://github.com/signalapp/Signal-Android/tree/bbea3fe1b110afadbac4d6a2c183dc4d899e4ead

1 Introduction

update mechanisms, adopted from the off-the-record (OTR) messag-
ing protocol4, to change locally stored encryption keys of communica-
tion partners irreversibly. With this technique, adversarial exposures
of this key material (e.g., due to physical access to user devices) remain
harmless to the confidentiality of previously communicated messages.
The update mechanism also renewed the key material of communi-
cation participants by mixing secretly generated fresh values into it.
This mixing process implies that also confidentiality of future messages
is regained after an adversarial exposure of stored keys. TextSecure,
which was later renamed to Signal, enhanced OTR’s key-update mech-
anism further5 and made it known under the term ‘ratcheting’. This
mechanism was eventually even integrated into WhatsApp.6
Key updates to protect against previous and later threats are, how-

ever, neither new nor exclusive to modern (two-party) messaging. For
example, traditional group key agreement in dynamic groups requires
that only the current set of group members can compute an established
key, whereas potentially malicious previous and future members are
unable to do so.

After these key-updating techniques were implemented in practice
and partially considered by academic research before, our approach in
this thesis is to rethink how their abstract concepts can be modeled
by cryptographic primitives generically. We thereby also take into ac-
count today’s user demands, extended technical opportunities, restric-
tions in realistic deployment settings, and many other special charac-
teristics of modern messaging applications that affect these crypto-
graphic primitives. By using well-established methodologies, we re-
view and systematize previous definitional approaches, and introduce
realistically stronger and more natural (security) definitions. Fur-
thermore, we analyze qualities and implications of these definitions

4Protocol description from 2012-10-18: https://
github.com/signalapp/Signal-Android/wiki/Protocol/
cfdfe3bbae7a06cd1cc6f1aee5bdf918b86b58d8

5Announcement from 2013-09-26 https://signal.org/blog/advanced-
ratcheting/

6Blog post from 2014-11-18: https://signal.org/blog/whatsapp/

2

https://github.com/signalapp/Signal-Android/wiki/Protocol/cfdfe3bbae7a06cd1cc6f1aee5bdf918b86b58d8
https://github.com/signalapp/Signal-Android/wiki/Protocol/cfdfe3bbae7a06cd1cc6f1aee5bdf918b86b58d8
https://github.com/signalapp/Signal-Android/wiki/Protocol/cfdfe3bbae7a06cd1cc6f1aee5bdf918b86b58d8
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/whatsapp/

1.1 Secure Messaging between Endpoints

as well as relations between them. Finally, we propose accordingly
secure constructions. Although our motivation is based on modern
messaging, our results are due to their generality applicable beyond
this particular use case.

Below, we point out challenges and crucial requirements of secure
messaging that we take into account, introduce relevant methodical
strategies and influential related literature that our work bases on,
and establish important abstract terms that we use, in order to com-
prehensibly present our own contributions embedded in the field of
cryptography.

1.1 Secure Messaging between Endpoints
Of the long history of secure digital user-to-user communication, only
one legacy protocol is still considerably deployed and used: End-
to-end encrypted email via PGP or S/MIME.7 Abstractly, the con-
cept behind this technology is stateless public key encryption: the
sender encrypts the payload of an email to the static public key of
the receiver. Although many recent articles reveal serious vulnerabili-
ties [PDM+18, MBP+19a, MBP+19b, MBP+20], the main features of
email with these piggyback protection mechanisms appear to remain
decisive: wide deployment of email, ad-hoc nature of communication,
and publicly accessible contact information.

Mobile Devices and Centralized Networks. In contrast to
email, which is traditionally used on desktop computers, modern mes-
saging applications are primarily designed for mobile use on smart-
phones. As a consequence, the local network of messengers constantly
changes and is typically not under control of the user. Furthermore,
while email is a (more or less)8 decentralized protocol, all established

7Use of email is still growing: https://www.statista.com/statistics/255080/
number-of-e-mail-users-worldwide/; Poddebniak et al. [PDM+18] list vari-
ous human rights organizations that recommend the use of PGP and S/MIME
to protect emails.

8Gmail had more than 1.5 billion active users in 2018 and each email to or

3

https://www.statista.com/statistics/255080/number-of-e-mail-users-worldwide/
https://www.statista.com/statistics/255080/number-of-e-mail-users-worldwide/

1 Introduction

messaging applications mandatorily route every communication via
their respective single central service provider. Assuming that the
presence of adversaries is more likely in partially uncontrollable net-
works, and anticipating that the center of a network is furthermore
a high-value target, it seems reasonable to consider communication
via messaging applications vulnerable. Hence, demanding protection
against network adversaries from these applications seems justified. In
fact, all major messaging applications used in liberal countries (i.e.,
WhatsApp, Facebook Messenger, and Telegram)1 implement end-to-
end encryption methods to protect communication.
Additionally and independent of network attackers, we emphasize

that the mobile use of messengers, compared to software run on sta-
tionary home computers, increases the risk that adversaries obtain
physical access to the local user device, exposing all secrets stored on
it.

Statefulness and Long-term Sessions. In contrast to encrypted
email where senders encrypt each message individually with the static
public key of receivers, modern messengers can use the local device
memory of smartphones to store, reuse, and update key material.
As we show in a work that is independent of this thesis [RMS18,
Rös18], all considered messenger protocols indeed utilize the local
state to protect communication, which we call statefulness. For exam-
ple, Threema, at the point of our analysis, let communication partici-
pants initiate a conversation by establishing a symmetric key from the
Diffie–Hellman key exchange of their long-term Diffie–Hellman shares.
This symmetric key was then permanently stored in the participants’
local states and used to encrypt all their communicated messages.
Due to statefulness, messaging sessions comprise the entire con-

versation between participants until one of them discards their local
session state. As the latter is usually linked to changing the device,
messaging sessions may take years. Adversaries, obtaining access to a
local session state—which can be more likely due to the mobile use of

from these users is delivered via Google servers: https://www.statista.com/
statistics/432390/active-gmail-users/

4

https://www.statista.com/statistics/432390/active-gmail-users/
https://www.statista.com/statistics/432390/active-gmail-users/

1.1 Secure Messaging between Endpoints

messaging apps—, hence, potentially compromise the security of all
conversations processed during the lifetime of a smartphone. While
this would have been the case in the above-given example of Threema,
we will point out below that using statefulness properly easily enables
significantly strengthened security, opposing this increased risk.

Asynchronicity. The use of messengers on mobile smartphones
has, beyond the higher risk of state exposures, the effect that com-
munication participants are never guaranteed to be or remain online,
even during an established conversation. However, users want to send
protected messages at any time, independent of their counterpart’s
current availability. This requirement includes the ability to initiate a
conversation non-interactively. The receiving counterparts should be
able to process incoming messages and respond as soon as they are
online, independent of whether the original sender is still available.
This asynchronous communication setting also requires that all par-
ticipants should be able to simultaneously and concurrently contribute
to the communication without being forced to follow a synchronized
schedule. In other words, sending messages should not depend on
communication partners’ current status, and messages may ‘cross’ on
the wire.

Forward-Secrecy. In addition to physical adversarial access to
user devices, many other examples highlight that exposures of locally
stored user secrets are a practical threat: viruses can steal secrets until
they are eliminated, remote backups or log files may unintentionally
include key material, temporary implementation bugs in messenger
applications may reveal their secrets, attackers can use cryptanalysis
against single keys, law enforcement agencies may lawfully coerce users
to reveal their device’s memory, etc.
The abstract security goal forward-secrecy requires that construc-

tions implement measures to guarantee security of past communication
after an involved participant’s local state was exposed to an adversary.
This goal is both acknowledged and well established in modern cryp-
tography. However, under all above-mentioned circumstances, pro-
tecting the security of communication under exposures of users’ local

5

1 Introduction

state secrets is a highly complicated problem:
A classic first-key-agreement-then-symmetric-protocol approach for

achieving forward-secrecy in the key-agreement phase usually involves
interaction, for example, when employing a Diffie–Hellman key ex-
change (DHKE) with ephemeral key material. As mentioned earlier,
interaction between participants during the initialization of a con-
versation cannot be guaranteed. Recall that Threema, for avoiding
interaction, initiated conversations with a key exchange under partic-
ipants’ publicly distributed static long-term key material and, hence,
failed to reach forward-secrecy.
Recent literature on forward-secure key exchange [GHJL17, DJSS18]

proposes yet inefficient non-interactive mechanisms. Practical proto-
cols, instead, circumvent the interaction-barrier efficiently by utilizing
central key servers with which users emulate interaction: they proac-
tively prepare multiple ephemeral contributions to the interactive key
exchange and store them on the server such that their counterparts
can download one contribution each and react without relying on si-
multaneous activity [CCD+17].

Strong forward-secrecy goes beyond the properties of session ini-
tialization: if session secrets are initially forward-securely established
but remain static afterwards, the security gain for long-term sessions
under state exposures is negligible. Consequently, messaging applica-
tions are today required to implement forward-secure continuous key
updates mechanisms within established conversations.

Recovery from Exposures. If an exposure happens early in a long
conversation, the impact of this attack is severe even if forward-secrecy
is maintained because messages sent thereafter are not protected by
it. The opposite security goal, post-compromise security [CCG16]9, re-
quires that a protocol continuously ‘heals’ its users’ local state secrets
such that the effect of their exposure on future communication’s se-
curity is limited. Modern messaging protocols simultaneously achieve
forward-secrecy (FS) and post-compromise security (PCS) to mini-
mize the compromise caused by state exposures. We note that this ter-

9‘Future secrecy’ and ‘backward secrecy’ used to be synonyms.

6

1.2 Ratcheting

minology (i.e., ‘FS’ and ‘PCS’) only refers to conceptual ideas rather
than clearly defined security goals.

Randomness Sources. Fresh randomness is a crucial ingredient to
achieve post-compromise security: If an adversary temporarily ob-
tained all secrets of a party, the only thing that this party can do to
regain a secure conversation after this exposure is to generate new key
material from secretly sampled random coins. As a result, reliance on
‘good’ randomness and security even under attacked randomness are
aspects that security of modern messengers is also confronted with.

1.2 Ratcheting

One technique implemented by messengers to continuously update
session states is via ‘hash chains’ where the symmetric key material
contained in the local state is replaced, after each use, by a new value
derived from the old value by applying some one-way function. This
method mainly targets forward-secrecy and has a long tradition in
cryptography. A second technique is to let participants routinely redo
a DHKE and mix the newly established keys into the session state: As
part of every outgoing message, a fresh gx value is combined with prior
and later values gy contributed by the peer, with the goal of refreshing
the session state as often as possible. This was introduced with the
OTR messaging protocol from [OTR16, BGB04] and promises auto-
healing after a state exposure, at least if the DHKE exponents are
derived from fresh randomness gathered from an uncorrupted source
after the state exposure took place. Of course, the two methods are
not mutually exclusive but can be combined.
We say that a messaging protocol employs ratcheting if it uses the

described or similar techniques for achieving forward-secrecy and post-
compromise security. In this context the term ‘ratcheting’ can be
traced back to the Pond protocol [Lan16] and refers to the idea that
new key material is continuously input into the current state, and
old material in the state is continuously discarded such that this pro-
cess cannot be reversed (forward-secrecy) and future states cannot be

7

1 Introduction

foreseen (post-compromise security).
Unless explicitly stated otherwise, we consider ratcheting protocols

in this thesis modularly in the sense that they consist of a mechanism
that continuously establishes symmetric keys and a cleanly separated
channel that uses these keys to protect payload. Since adding a chan-
nel on top of the key establishment component is often straightfor-
ward, we almost exclusively focus on the establishment of keys here.

From Design Technique to Primitive Class. The most promi-
nent and most widely deployed real-world ratcheting protocol is the
Double Ratchet Algorithm (sometimes called Signal Protocol) [PM16].
This protocol by Marlinspike and Perrin is used by all major messaging
apps (the Signal Messenger, WhatsApp, Facebook Messenger, Skype,
and others). Most importantly, it initiated the academic research on
practical ratcheting constructions and theoretical aspects thereof.
An influential milestone for the academic consideration of ratch-

eting was the seminal work by Bellare et al. [BSJ+17]. Instead of
following the construction-driven perspective, they abstractly capture
the concept of ratcheted key exchange (RKE) by defining a suitable,
generic syntax, and thereby considering it a distinct cryptographic
primitive. To focus on the core idea of ratcheting, they disregard
extraneous components like the initialization of a session or the confi-
dential messaging channel. Furthermore, they concentrate on only the
Alice-to-Bob direction of the communication. In this syntax they de-
fine three algorithms: a non-interactive initialization algorithm with
which Alice and Bob jointly compute their local session states, a send
algorithm that can be invoked by Alice, and a receive algorithm that
can be invoked by Bob. With the latter two, Alice and Bob can con-
tinuously establish symmetric keys in the session.
Alice uses her local state in the send algorithm to compute a sym-

metric key, derive an according ciphertext, and update her state.
When obtaining a ciphertext from Alice, Bob can use his state in
the receive algorithm to compute (the same) symmetric key and up-
date his state. Since Alice and Bob cannot switch roles in this syntax
notion (i.e., Bob can never respond), we refer to it as unidirectional

8

1.2 Ratcheting

RKE. With this clear concept, Bellare et al. abstractly cover the in-
terfaces of ratcheting algorithms to their environment, and thereby
divide ratcheting from the established key agreement10 literature that
often dispenses with precise syntax specifications (see Paragraph Def-
initions below).

Defining Security Methodically. In addition to defining a dis-
tinct syntax, Bellare et al. apply a well-established methodology in
cryptography on this primitive to obtain an almost natural notion
of security: they define a game played by an adversary A in which
the execution of an RKE session is simulated. In this game, A can
let Alice and Bob invoke their respective algorithms and determine
these invocations’ public input parameters. Furthermore, adversary A
can expose Alice’s internal local state secrets. Winning the game is
conditioned on A being able to distinguish keys, established between
Alice and Bob during the game, from randomly sampled keys. As
the described adversarial power allows for trivially and unpreventably
solving some game challenges (e.g., keys computed by Bob after an ad-
versarial impersonation of Alice), the adversary is restricted to solving
only those challenges that can theoretically be protected by an RKE
construction.
The main novelty here is the minimal restrictions of adversaries in

the last mentioned step: this approach defines security of RKE via de-
termining what theoretically could and potentially should be achieved
by constructions—which we call naturally as it follows a clear method-
ology that is standard for many cryptographic primitives like secu-
rity under chosen ciphertext attacks (CCA) for encryption [RS92]11—
rather than analytically determining the notion security from what
one particular protocol actually achieves.
10Please note our distinction between key agreement and ratcheted key exchange

protocols. The former is run by parties who share no common secrets to obtain
a symmetric key for initiating subsequent session protocol. The latter is the
session protocol that might utilize the initial key and that continuously outputs
symmetric keys in the session independent of long-term keys.

11Unfortunately, even CCA-security is slightly ambiguous [BHK15] even beyond
the obscure lunchtime security notion [NY90].

9

1 Introduction

Considering Bidirectional Interaction. Wemention these tech-
nical details here already to make the reader familiar with method-
ical approaches of defining syntax and security that are important
throughout this entire work. Turning to the more abstract view, the
first heavy restriction of the above presented definitional basis by Bel-
lare et al. is that adversaries are unrealistically forbidden to expose
Bob’s local state; This results in unnecessarily relaxed forward-secrecy
requirements. A far more serious limitation is the restricted commu-
nication setting to only unidirectional interaction between Alice and
Bob.
In Chapter 3 we present our results based on article [PR18b] from

CRYPTO 2018 in which we overcome these issues by first redefining
security of unidirectional RKE and then extending syntax and secu-
rity concerning permitted user interaction in two steps: We introduce
the notion of sesquidirectional (lat. ‘sesqui-’ means ‘one and a half’)
RKE that allows Bob to send ‘non-functional’ ciphertexts back to
Alice. By allowing Bob to contribute information, these ciphertexts
can strengthen theoretically achievable security but do not initiate
the (functional) establishment of symmetric keys in the Bob-to-Alice
direction. Based on this, we formulate the notion of fully bidirec-
tional RKE in which both parties equally participate in the continu-
ous establishment of keys. Due to the fully asynchronous and, hence,
concurrent interaction in the bidirectional setting, the corresponding
security notions can be considered an order of magnitude more com-
plex than those from the unidirectional setting. Our staged approach,
consequently, allows us to substantially reduce complexity and clearly
point out the core elements of ratcheting.

Constructions. For all our security notions we provide construc-
tions and accordingly prove their security in Chapter 3. Similar to
the complexity of security definitions, the corresponding ratcheting
constructions become increasingly complex for the bidirectional vari-
ants. However, our incremental consideration of interaction pays off:
we can generically build bidirectional RKE from two sesquidirectional
RKE schemes. Nevertheless, while our unidirectional RKE construc-

10

1.2 Ratcheting

tion generalizes previous ratcheting designs and uses standard building
blocks such as public key encryption, we introduce and use new key-
updatable public key encryption (kuPKE) primitives to instantiate our
sequidirectional RKE notion. Intuitively, kuPKE is standard public
key encryption of which public key and secret key can be updated
independently such that differing updates lead to incompatible keys.
Interestingly, we build this new key-updatable primitive from the

powerful and sophisticated tool hierarchical identity-based encryption.
Hence, we use far stronger and less efficient tools for sesqui- and bidi-
rectional RKE than needed for our unidirectional notion and imple-
mented in the practical Signal protocol.

[PR18b] Bertram Poettering and Paul Rösler. Towards bidirec-
tional ratcheted key exchange. In Advances in Cryptology
– CRYPTO 2018
All formal results as well as large parts of the textual descrip-
tions in this work except for the definitions were contributed by
the author of this thesis.

Efficiency. The just highlighted intuitive separation between unidi-
rectional RKE and bidirectional RKE with respect to the hardness of
their constructions’ building blocks, revealed by the results in Chap-
ter 3, leads us to the following questions: 1. Is strong key-updatable
public key cryptography necessary to realize naturally secure ratchet-
ing? 2. If yes, under which conditions can this necessity be proven?
3. Under which conditions is standard public key cryptography suffi-
cient to realize ratcheting?
Motivated by these questions, we investigate the relation between

ratcheting and key-updatable public key encryption in Chapter 4 that
is based on our article [BRV20a] from ASIACRYPT 2020. Our sur-
prising result is that already unidirectional RKE necessarily relies on
building blocks as hard as kuPKE under slightly adapted, realistic
conditions.
In order to prove this, we consider attacks against randomness in

ratcheting. We thereby introduce the first natural security definition

11

1 Introduction

of unidirectional RKE that takes into account manipulation of random
coins and exposures of participants’ local states in a unified form.
With these results we determine key-updatable public key encryp-

tion as the core primitive of strongly secure ratcheting such that future
research can concentrate on enhancing constructions thereof. Further-
more, we methodically point out under which conditions ratcheting
can be built from less expensive components. Finally, we provide the
first clear security notion of ratcheting under attacked randomness.

[BRV20a] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determin-
ing the core primitive for optimally secure ratcheting. In
Advances in Cryptology – ASIACRYPT 2020
This entire work except for one proof and minor textual revisions
was contributed by the author of this thesis.

1.3 The Group Setting

Beyond two-party messaging, conversations in groups are an impor-
tant, much-used feature of messaging applications.12 For accordingly
lifting ratcheting concepts to group conversations, many obstacles
arise for which solutions in the two-party setting are insufficient or do
not even exist. Before turning to constructions and problems thereof,
we discuss differences between these settings on a conceptional level.

Larger Attack Surface. Conversations with more participants
are inherently more susceptible to state exposures because their at-
tack surface increases linearly. Moreover, while forward-secrecy can
generally be achieved by locally processed updates of the key material
without relying on communication between the users, achieving post-
compromise security crucially relies on interactive (update) contribu-
tions from the affected participants. Hence, the local state of the least
active participant in a group poses the greatest security risk regard-
ing state exposures. Maintaining a group conversation secure, con-
12https://www.statista.com/statistics/800650/group-chat-functions-

age-use-text-online-messaging-apps/

12

https://www.statista.com/statistics/800650/group-chat-functions-age-use-text-online-messaging-apps/
https://www.statista.com/statistics/800650/group-chat-functions-age-use-text-online-messaging-apps/

1.3 The Group Setting

sequently, requires all participants to regularly and frequently share
new information with the group.

Complex Interaction. Not only because it is supportive for gain-
ing security, interaction within groups is intensified and thereby more
complicated. The probability of simultaneous and, hence, concur-
rent contributions increases quadratic in the number of members if
sending is uniformly distributed. If updating the local state and shar-
ing according information is linked to the transmission of payload in
groups, concurrency is almost unavoidable. Consider, for example,
one user posting a question to a group chat. If multiple users are
online on receipt and formulate their reply immediately, these replies
are likely (also due to network latency) sent and processed concur-
rently.13 Although concurrency is not an issue per se, techniques from
the two-party setting do not directly scale for processing and ‘merg-
ing’ concurrently contributed update information of arbitrarily many
users: The above sketched simple state update mechanism based on
Diffie–Hellman key exchange works perfectly under concurrency for
two-party chats, but a practical group equivalent (i.e., multi-party
non-interactive key exchange) is not available.

Constructions and Standardization. Abstractly, ratcheting in
groups captures the idea of continuously establishing key material
between many users under adversarial state exposures. This idea is
conceptually already covered by traditional dynamic group key agree-
ment: The exposed state secrets of a user Alice can be thought of as
her current identity being a malicious member in a group. For con-
tributing new key material to recover from this exposure, Alice can
remove this malicious member (i.e., her own identity) from the group
and immediately add a freshly generated identity to the group again.
In a work independent of this thesis, we analyze how group chats

are actually implemented in popular real-world messenger applica-
13Delivery acknowledgments automatically inform the sender of a message that the

respective receiver obtained this message. If sending these acknowledgments
initiates state updates on the receiver side, as implemented in Signal [Rös19],
concurrency is provoked for every payload message in a group.

13

1 Introduction

tions [RMS18, Rös18]. Among other things, we show that Signal’s
approach is to simply send group messages via the pairwise (post-
compromise secure) channels between the sender and every other group
member. While this mechanism bypasses concurrency problems, it in-
duces a communication overhead per (state update) message linear in
the number of group members.
Many recent group ratcheting schemes were developed based on the

above-sketched concept of updating user states via dynamic member-
ship replacements using group key agreement techniques. With this
approach, a far better, only logarithmic, communication overhead is
achieved, but none of these schemes can appropriately handle concur-
rency.

Concurrency, Quick Recovery, and Overhead. For processing
concurrently sent ciphertexts with which their senders aim to update
their local state in a group, all previous group ratcheting constructions
implement either of the following three alternatives: 1. Receivers re-
ject all but one of the sent ciphertexts such that only one sender
achieves post-compromise security for their local state; 2. Receivers
merge the sent ciphertexts in a way that maintains a logarithmic com-
munication overhead but is ineffective for gaining post-compromise
security; 3. Receivers give up on the logarithmic communication over-
head and fall back to a parallel execution of pairwise channels; They
potentially regain better efficiency as soon as the senders sent again
non-concurrently.
In Chapter 5 that bases on our article [BDR20b] from TCC 2020 we

analyze whether this apparent tension between post-compromise secu-
rity, concurrency, and communication overhead is inherent. Thereby
we search for the minimal overhead under concurrency for achieving
post-compromise security in groups. By providing both a lower and
upper bound of communication complexity in this setting, we answer
these questions almost conclusively.
For our lower bound, we develop a symbolic execution model with

which we capture the minimal setting in which this tension already
occurs, being most restrictive for adversaries and both least demand-

14

1.3 The Group Setting

ing as well as most liberal for constructions. Our proof shows that a
communication overhead linear in the number of concurrently active
group members is inevitable to achieve post-compromise security in
this setting. We complement this lower bound with a group ratcheting
construction that achieves a communication overhead that is almost
tight to it (i.e., up to a logarithmic factor).

[BDR20b] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler.
On the price of concurrency in group ratcheting protocols.
In Theory of Cryptography – TCC 2020
All formal results as well as the majority of textual descriptions
in this work except for the protocol construction and two proofs
for the upper bound were contributed by the author of this thesis.

Definitions. Besides construction ideas, group key agreement and
the key exchange-core of group ratcheting are similar in the abstract
and generic intuitions of their (user-)interfaces, adversarial threats,
and security requirements. Hence, it is not surprising that definitional
approaches of the emerging group ratcheting research partially adopt
and inherit established definitions from the long history of group key
agreement literature.
In order to understand relations between, discover advantages and

disadvantages of, and extract recommendations on how to design, se-
curity models for these cryptographic primitives, we systematize this
literature in Chapter 6 that bases on our work [PRSS21] from CT-
RSA 2021. Although it is clear that generality in security models
is necessary to allow for comparability of constructions, our system-
atization confirms the common intuition in the research community
that (group) key agreement models are usually defined for the single
purpose of analyzing one particular protocol. We therefore augment
our systematizing analysis with the design of a model that, based on
lessons learned from the literature but also crucial reconsiderations of
modeling approaches therein, neglects extraneous elements and aims
for simplicity and generality.
With these results we facilitate access to the considered literature

15

1 Introduction

and hope to inspire future work on group ratcheting such that security
models become more general and comparable.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Dou-
glas Stebila. SoK: Game-based Security Models for Group
Key Exchange. In Topics in Cryptology – CT-RSA 2021
The entire systematization as well the new model design were
almost exclusively contributed by the author of this thesis. This
work was supported by fruitful discussions with, and textual re-
visions by, the co-authors.

1.4 Further Contributions

In addition to the work covered in this thesis, we contributed to further
topics in IT-security and cryptography. The exact contributions to the
following chapters’ contents are explicitly declared at the beginning
of each chapter, if necessary.

Lead Author The author of this thesis is the lead author of the
articles incorporated in this work as well as the already mentioned
analysis of group chat implementations in real-world messaging ap-
plications [RMS18] that has already been part of his Master’s the-
sis [Rös18].

[RMS18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More
is less: On the end-to-end security of group chats in Signal,
WhatsApp, and Threema. In IEEE European Symposium
on Security and Privacy – EuroS&P 2018 (authors ordered
by their contributions)
All formal results as well as the majority of textual descriptions
in this work were contributed by the author of this thesis.

[Rös18] Paul Rösler. On the end-to-end security of group chats
in instant messaging protocols. Master’s thesis, Ruhr Uni-
versity Bochum, 2018

16

1.4 Further Contributions

In another more recent work [DRS20], the author of this thesis,
again in the role of the lead author, developed a new security model for
modern special-purpose channel establishment protocols. Our more
abstract modeling approach in this article was necessary to formally
analyze such protocols’ security because previous models were unable
to cover integrated continuous key update mechanisms, flexibly adapt-
able security guarantees, and a lack of modularity. We use this model
in our security analysis of protocols from the Noise framework [Per17].
This analysis is particularly important because this framework is im-
plemented in widely deployed applications like WhatsApp.

[DRS20] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flex-
ible authenticated and confidential channel establishment
(fACCE): Analyzing the Noise protocol framework. In
Public-Key Cryptography – PKC 2020
The entire model design as well as the majority of textual de-
scriptions were contributed by the author of this thesis.

Furthermore, the author of this thesis was the lead author of an arti-
cle that proposes constructions and analyzes properties of combiners
for authenticated encryption with associated data (AEAD) [PR20].
A combiner is a method to connect instantiations of a primitive, here
AEAD, such that this combination remains secure as long as only one
of its component instances is.

[PR20] Bertram Poettering andPaul Rösler. Combiners for AEAD.
IACR Transactions on Symmetric Cryptology, 2020 (1)
The majority of formal results and textual descriptions in this
work were contributed by the author of this thesis.

Co-Author As a co-author, we also contributed to an analysis of
attacks against deterministic signature schemes [PSS+]. Our contri-
bution therein was the contextualization and abstraction of the attack
strategy with regards to underlying essential conditions that under-
mine the Fiat-Shamir transform [FS87]. Furthermore, the results of

17

1 Introduction

the author’s Bachelor’s thesis [Rös15] were core contents of an arti-
cle that analyzes security issues in the deployment of encrypted cloud
infrastructures [GMR+16]. Inspired by this work, an analysis of weak-
nesses in Microsoft’s document protection mechanisms [GMRS16] has
been co-authored by the author of this thesis.

[PSS+] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel,
Manfred Lochter, and Paul Rösler. Attacking determin-
istic signature schemes using fault attacks. In IEEE Euro-
pean Symposium on Security and Privacy – EuroS&P 2018
(authors ordered by their contributions)
The abstraction and contextualization of the attack in this work
were contributed by the author of this thesis.

[GMR+16]Martin Grothe, Christian Mainka, Paul Rösler, Johanna
Jupke, Jan Kaiser, and Jörg Schwenk. Your cloud in my
company: Modern rights management services revisited.
In International Conference on Availability, Reliability and
Security – ARES 2016 (authors ordered by their contribu-
tions)
The attack against Tresorit as well as significant parts of textual
descriptions in this work were contributed by the author of this
thesis.

[Rös15] Paul Rösler. Architektur- und Sicherheitsanalyse von
Tresorit und Tresorit DRM. Bachelor’s thesis, Ruhr Uni-
versity Bochum, 2015

[GMRS16] Martin Grothe, Christian Mainka, Paul Rösler, and Jörg
Schwenk. How to break Microsoft rights management ser-
vices. In USENIX Workshop on Offensive Technologies –
WOOT 16 (authors ordered by their contributions)
Support for the attack validation as well as revisions of textual
descriptions in this work were contributed by the author of this
thesis.

18

1.5 Organization

1.5 Organization
We introduce our notation as well as necessary basic definitions in
Chapter 2. The contents of the core chapters 3, 4, 5, and 6 have been
sketched above. Notable work related to the results in these chapters
are provided therein, respectively. We conclude this thesis and provide
an outlook on extending future work and yet open questions posed by
our results in Chapter 7.

19

2
Preliminaries

We here introduce our modeling approaches, and the notation and
security definitions for all basic building blocks used in this entire
work.

2.1 Cryptographic Modeling
In order to formally analyze the security of cryptographic protocols,
we use abstractions of reality. We therefore make use of two differ-
ent well established modeling techniques: computational game-based
models and symbolic execution models.
We acknowledge the widespread perspective on modeling that “all

models are wrong” [Box76] when comparing their abstractions with
conditions in the real-world. Consequently, in addition to introduc-
ing these modeling techniques, we provide a short discussion on their
practical meaning. However, since these general modeling approaches
are not the focus of this work but only tools for analyzing security, we
restrict their introduction and discussion to the necessary minimum
and refer the interested reader to standard literature on computer
sciences and cryptography for further details.

2.1.1 Computational Game-Based Models

A computational game-based security model defines security for a cryp-
tographic protocol via a game played by an adversary who wins this
game if it breaks the considered security property of this protocol.
Such a game models the real-world interaction between practical at-
tackers and their victims’ protocol executions through oracles that the
adversary can query during the game. With one type of oracles the

21

2 Preliminaries

adversary can control (the schedule and public inputs of) algorithm in-
vocations of victims to let them execute the protocol at its will. With
another type of oracles the adversary can access the victims’ secrets
that they use in these invocations. To capture successful adversarial
attacks in the game’s winning condition, further oracles can be intro-
duced that embed challenges for the adversary or accept respective
solutions from it. We emphasize that this type of modeling does not
further specify the adversarial behavior during the game—especially
not the adversary’s internal computations.

Almost all cryptographic protocols can be broken by computation-
ally unrestricted attackers (except for, e.g., the one-time pad) and all
practical attackers are indeed restricted in their computational power.
Hence, a computational game-based security model defines the advan-
tage of any adversary in winning such a game under consideration
of respectively needed run-time and memory consumption. (Thereby
an adversary that needs unreasonably many resources for its attack is
declared unsuccessful.)

It has been a tradition in the cryptographic literature to define secu-
rity according to a security parameter. From this parameter both the
asymptotic maximum of computational resources used by a realistic
adversary (polynomial in the security parameter) and the asymptotic
maximum of its advantage in breaking the security property (negligi-
ble in the security parameter) are derived under which a protocol is
declared secure accordingly. Modern cryptographic literature instead
provides concrete advantage terms that clearly point out the rela-
tion between breaking a protocol and reducing this to breaks of its
component building blocks under the resources needed for this reduc-
tion. While the concept of security is the same for both approaches,
the concrete advantage term more precisely specifies the quality of a
reduction and thereby rather states the conditions under which the
practical deployment of a protocol is secure (e.g., which key lengths
are appropriate and necessary). We follow this latter approach in this
work.

22

2.1 Cryptographic Modeling

Formal Notation of Games Security games, that we denote with
Game, invoke probabilistic adversaries via instruction ‘Invoke’. These
adversaries are denoted by calligraphic letters (usually A or B). Ad-
versaries have access to the game’s interface, which is defined by ora-
cles that are denoted by the term Oracle. Games are terminated via
instructions ‘Stop with x’ (meaning that x is returned by the game)
or ‘Reward b’ (meaning that the game terminates and returns 1 if
the Boolean variable b has the value True). The two instructions are
used for appraising the actions of the adversary: Intuitively, if the
adversary behaves such that a required condition is violated then the
adversary definitely ‘loses’ the game, and if it behaves such that a re-
warded condition is met then it definitely ‘wins’. We write Pr[G⇒ 1]
for the probability that game G terminates with return value 1. In
procedures that we denote by Proc and in oracles, we use the shortcut
notion ‘Require x’. Depending on the procedure’s or oracle’s number
of return values n, that means ‘If x = F, then return ⊥n’, where F is
the Boolean constant False and ⊥ is a special abortion symbol.
We note that there are different established ways to define secu-

rity games related to key exchange. Some works give very compact
definitions (in [BSJ+17] a ratcheting security notion is compressed,
without losing detail, into a single figure), while other works spec-
ify game families, parameterized for instance with separate freshnesh
predicates (in [CCD+17], security notions for ratcheting are divided
into the game description and a description of the freshness predicate).
We follow the former approach and give a discussion on the modeling
of ratcheting in Section 3.13.

2.1.2 Symbolic Execution Models

In Chapter 5 we use an entirely different approach to model adver-
saries, cryptographic protocols, and the interaction between them: A
symbolic execution model treats all values in an environment as ab-
stract symbols that have no bit representation, and hence neither an
algebraic structure. For computations with these symbols, all algo-
rithms in the environment, including those of the protocol and the ad-

23

2 Preliminaries

versary itself, are defined to follow predefined derivation rules. These
derivation rules model the computational power of available (crypto-
graphic) building blocks. A cryptographic protocol is declared secure
if no symbolic adversarial execution can reach a state in its sym-
bolic execution of the analyzed protocol that is defined as a break of
the protocol’s security properties. Adversaries in symbolic execution
models, in contrast to computational models, are unbounded in their
run-time and memory consumption. Nevertheless, the restriction of
available computations to fixed derivation rules is a heavy (unrealistic)
idealization. Thereby the meaning of a proven statement in a sym-
bolic model heavily depends on the (computational) power provided
by these derivation rules.

Formal Notation of Symbolic Execution Models A symbolic
execution model mainly consists of the definition of types of sym-
bols, grammar rules that describe the relation between these types,
and derivation rules that describe possible transitions between the
symbols. We describe grammar rules as follows: For three types of
symbols X, Y , and Z in a grammar, X 7→ Y |Z denotes that symbols
of type X can be parsed as symbols of type Y or type Z. A type that
cannot be parsed further is called terminal type. Using these gram-
mar rules, we define derivation rules that describe how symbols can
be derived from sets of (other) symbols. For a symbol m and set of
symbols M , M ` m means that m can be derived from the symbols
in set M by using the grammar and derivation rules that we specify
in our symbolic model.

2.2 Notation

Our general notation for the description and use of algorithms, sets,
intervals, lists, etc. is defined as follows. If A is a (deterministic or
probabilistic) algorithm we write A(x) for an invocation of A on in-
put x. If A is probabilistic, we write A(x) ⇒ y for the event that
an invocation results in value y being the output. We further write

24

2.2 Notation

[A(x)] := {y : Pr[A(x)⇒ y] > 0} for the effective range of A(x).
If a ≤ b are integers, we write [a .. b] for the set {a, . . . , b} and we

write [a, ...] for the set {x ∈ N : a ≤ x}. We refer to intervals and
their boundaries (smallest and largest elements) as follows: For an
interval I = [a .. b] we write I |< for a and I >| for b. We denote the
Boolean constants True and False with T and F, respectively. We use
Iverson brackets to convert Boolean values into bit values: [T] = 1
and [F] = 0. To compactly write if-then-else expressions we use the
ternary operator known from the C programming language: If C is a
Boolean condition and e1, e2 are arbitrary expressions, the composed
expression “C ? e1 : e2” evaluates to e1 if C = T and to e2 if C = F.
Symbol ‘ε’ denotes an empty string. When we refer to a list or

sequence we mean a (row) vector that can hold arbitrary elements,
where we abuse the notation of empty string ‘ε’ to denote the empty
list. Lists that hold precisely one element are notationally identified
with the element itself. By X ∗, we denote the set of all lists of arbitrary
size whose elements belong to X . With P(X) we denote the power set
of X such that P(X) is the set of all subsets of X . If an element or
a list x ∈ X ∗ is appended to list L then we denote this by L← L ‖x
(or simply L q← x). Thus, ‘‖’ denotes a special concatenation symbol
that is not an element of any of the explicitly defined sets. We define
relations prefix-or-equal � and strictly-prefix ≺ over two lists. For
instance, for lists L,L0 = L ‖x, L1 = L ‖ y where x, y ∈ X , x 6= y we
have that L � L,L ⊀ L,L ≺ L0, L ≺ L1, L0 � L1, L1 � L0 meaning
that L is a prefix of L0 and L1 but neither of L0, L1 is a prefix of the
other. Note that if the elements held by two lists are strings (over
some alphabet) then the concatenation of the lists does not result
in the strings being concatenated; in particular, "ab" ‖ "c" 6= "abc".
(We do not use string concatenation in this work, so ambiguities are
naturally avoided.) We denote the cardinality of a set X or the length
of a string s with symbols |X | and |s|.

Program code. We describe algorithms and security experiments
using (pseudo-)code. In such code we distinguish the following op-
erators for assigning values to variables: We use symbol ‘←’ when

25

2 Preliminaries

the assigned value results from a constant expression (including the
output of a deterministic algorithm), and we write ‘←$’ when the
value is either sampled uniformly at random from a finite set or is
the output of a probabilistic algorithm. For such a probabilistic algo-
rithm Y, x ← Y(y; r) denotes the deterministic evaluation of Y on y
with output x where the evaluation’s randomness is fixed to r.
If we assign a value that is a tuple but we are actually not interested

in some of its components, we use symbol ‘ ’ to mark positions that
shall be ignored. For instance, (, b,) ← (A,B,C) is equivalent to
b← B. If X,Y are sets we write X ∪← Y shorthand for X ← X ∪ Y ,
and if L1, L2 are lists we write L1

q← L2 shorthand for L1 ← L1 ‖L2.
We use bracket notation to denote associative arrays (a data structure
that implements a dictionary). Associative arrays can be indexed with
elements from arbitrary sets. For instance, for an associative array A
the instruction A[7]← 3 assigns value 3 to index 7, and the expression
A[abc] = 5 tests whether the value at index abc is equal to 5. We write
A[·]← x to initialize the associative array A by assigning the default
value x to all possible indices. For an integer a we write A[..., a]← x
as a shortcut for ‘For all a′ ≤ a: A[a′]← x ’.

Scheme specifications. We also describe the algorithms of crypto-
graphic schemes using program code. Some algorithms may abort or
fail, indicating this by outputting the special symbol ⊥. This is implic-
itly assumed to happen whenever an encoded data structure provided
by the adversary is to be parsed into components but the encoding
turns out to be invalid (thus ⊥ is not an element of explicitly defined
sets).

2.3 Cryptographic Building Blocks

In the following we define computational game-based security for stan-
dard cryptographic primitives used as building blocks in this thesis.
For clarity in our proofs, we consider multi-instance notions of secu-
rity below. These notions are equivalent to the respective standard
notions with only one instance. However, the corresponding trivial

26

2.3 Cryptographic Building Blocks

reduction loses a factor of n, where n is the total number of instances:
The instance which the adversary successfully attacks is guessed in the
reduction, and the n−1 remaining instances are simulated with knowl-
edge of the corresponding key. Beyond clarity, using multi-instance
notions reduces unnecessary tightness losses in our reductions that are
induced by model artifacts.

2.3.1 (Dual) Pseudo-Random Function

A pseudo-random function (PRF) for an associated-data space AD
and a samplable key space K is a function PR = prf that takes a key
k ∈ K and an associated-data string ad ∈ AD, and outputs another
key k′ ∈ K. A dual PRF for a samplable key space K is a function
PR = dprf that takes two keys k1, k2 ∈ K and outputs another key
k′ ∈ K. Shortcut notations are thus

K ×AD → prf → K K×K → dprf → K .

We only define computational game-based security for standard
PRFs here as dual PRFs are only considered symbolically in Chap-
ter 5.
For security of (standard) PRFs we formalize a multi-instance vari-

ant of indistinguishability of output keys of a keyed scheme PR from
output (keys) of a random function which we denote by game KINDb

PR
from Figure 2.1. In this game, the adversary can choose associated-
data inputs to either evaluate the actual PRF on one out of multi-
ple keys, or evaluate one out of multiple random functions accord-
ingly. The adversary is also allowed to create new instances, or to
expose them, meaning to learn their keys. The advantage of an ad-
versary A in distinguishing evaluations of the PRF from evaluations
of random functions in game KINDb

PR is defined as Advkind
PR (A) ..=

Pr[KIND0
PR(A) ⇒ 1] − Pr[KIND1

PR(A) ⇒ 1]. Intuitively, a PRF is
secure if all practical adversaries have a negligible advantage.
A secure dual PRF additionally achieves indistinguishability of out-

put keys in case at most one of the two input keys is exposed. For sim-
plicity (in our proof), we only consider symmetric dual PRFs [BL15],

27

2 Preliminaries

Game KINDb
PR(A)

00 n← 0
01 CH← ∅; XP← ∅
02 b′ ←$ A
03 Require CH ∩XP = ∅
04 Stop with b′

Oracle Gen
05 n← n+ 1
06 Fn[·]← ε
07 kn ←$ K
08 Return

Oracle Expose(i)
09 Require 1 ≤ i ≤ n
10 XP ∪← {i}
11 Return ki
Oracle Eval(i, ad)
12 Require 1 ≤ i ≤ n
13 CH ∪← {i}
14 If Fn[ad] = ε:
15 Fn[ad]←$ K
16 y0 ← Fn[ad]
17 y1 ← prf(k, ad)
18 Return yb

Figure 2.1: Security experiment KIND, modeling the security of a pseudo-random
function in a multi-instance setting. Variable n indicates the number of established
instances, associated array Fi simulates a random function for each instance i, and
sets CH and XP keep track of the instances that are challenged due to an evaluation
and exposed, respectively.

fulfilling the property that dprf(k1, k2) = dprf(k2, k1) = k′ for all
k1, k2 ∈ K.

2.3.2 Message Authentication Codes

A message authentication code (MAC) for a message spaceM is a pair
M = (tag, vfyM) of algorithms together with a samplable key space K
and a tag space T . The tag-generation algorithm tag takes a key k ∈ K
and a message m ∈ M, and outputs a tag τ ∈ T . The deterministic
tag-verification algorithm vfyM takes a key k ∈ K, a message m ∈M,
and a tag τ ∈ T , and outputs a Boolean value: either T (for accept)
or F (for reject). Shortcut notations for tag generation and verification
are thus

K ×M→ tag→ T K ×M× T → vfyM → {T, F} .

For correctness we require that for all k ∈ K and m ∈ M and τ ∈
[tag(k,m)] we have vfyM(k,m, τ) = T.

As a security property for MACs we formalize a multi-instance ver-
sion of one-time strong unforgeability. In this notion the adversary

28

2.3 Cryptographic Building Blocks

has to produce, for a message of its choice, a fresh but valid tag (for
any out of a set of independent instances, each initialized with a uni-
formly picked key). The adversary can create new instances or to
expose them, and is supported by tag generation and verification or-
acles, where the former can only be queried once per instance. The
details of this notion are in game SUF in Figure 2.2. For a MAC M,
we associate with any adversary A its strong unforgeability advantage
Advsuf

M (A) ..= Pr[SUFM(A) ⇒ 1]. Intuitively, a MAC is secure if all
practical adversaries have a negligible advantage.

Game SUFM(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 kn ←$ K
05 mtn ← ⊥
06 Return

Oracle Expose(i)
07 Require 1 ≤ i ≤ n
08 XP ∪← {i}
09 Return ki

Oracle Tag(i,m)
10 Require 1 ≤ i ≤ n
11 Require mti = ⊥
12 τ ← tag(ki,m)
13 mti ← (m, τ)
14 Return τ

Oracle Vfy(i,m, τ)
15 Require 1 ≤ i ≤ n
16 b← vfyM(ki,m, τ)
17 If i /∈ XP ∧ (m, τ) 6= mti:
18 Reward b
19 Return b

Figure 2.2: Security experiment SUF, modeling the one-time strong unforgeabil-
ity of a MAC in a multi-instance setting. Variable n indicates the number of
established instances, set XP keeps track of the instances that are exposed, and
for each instance i variable mti keeps track of the message and corresponding tag
that are processed in Tag queries.

2.3.3 Signature Schemes

A signature scheme for a message spaceM is a triple S = (genS, sgn,
vfyS) of algorithms together with a signer key-space SK, a verifier key-
space VK, and a signature space Σ. The randomized key-generation
algorithm genS outputs a signer key sgk ∈ SK and a verifier key
vfk ∈ VK. The signing algorithm sgn may be randomized and takes a

29

2 Preliminaries

signer key sgk ∈ SK and a message m ∈ M, and outputs a signature
σ ∈ Σ. The deterministic verification algorithm vfyS takes a verifier
key vfk ∈ VK, a message m ∈M, and a (candidate) signature σ ∈ Σ,
and outputs a bit b ∈ {T, F}, indicating acceptance and rejection,
respectively. Shortcut notations for the three algorithms are thus

genS →$ SK × VK SK ×M→ sgn→$ Σ

VK ×M× Σ→ vfyS → {T, F} .
For correctness we require that for all (sgk, vfk) ∈ [genS] and m ∈ M
and σ ∈ [sgn(sgk,m)] we have T = vfyS(vfk,m, σ).

We formalize a multi-instance security notion of one-time strong
unforgeability for signatures. Concretely, the adversary controls the
messages processed by the signers, it sees the resulting signatures,
and its goal is to make a verifier accept a message-signature pair that
was not processed by the respective signer. Again, the adversary can
create new instances or expose their singing keys. The details of this
notion are in game SUF in Figure 2.3. For a signature scheme S, we
associate with any adversary A its strong unforgeability advantage
Advsuf

S (A) ..= Pr[SUFS(A) ⇒ 1]. Intuitively, a signature scheme is
secure if all practical adversaries have a negligible advantage.

2.3.4 Key Encapsulation Mechanisms

We consider a type of key encapsulation mechanism where key pairs
are generated by first randomly sampling the secret key and then de-
terministically deriving the public key from it. While this syntax is
non-standard, note that it can be assumed without loss of generality:
One can always understand the coins used for (randomized) key gen-
eration of a classic key encapsulation mechanism as the secret key in
our sense.
A key encapsulation mechanism (KEM) for a finite symmetric-key

space K is a triple K = (genK, enc, dec) of algorithms together with
a samplable secret-key space SK, a public-key space PK, and a ci-
phertext space C. In its regular form the public-key generation algo-
rithm genK is deterministic, takes a secret key sk ∈ SK, and outputs

30

2.3 Cryptographic Building Blocks

Game SUFS(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (sgkn, vfkn)←$ genS
05 msn ← ⊥
06 Return vfkn
Oracle Expose(i)
07 Require 1 ≤ i ≤ n
08 XP ∪← {i}
09 Return sgki

Oracle Sgn(i,m)
10 Require 1 ≤ i ≤ n
11 Require msi = ⊥
12 σ ← sgn(sgki,m)
13 msi ← (m,σ)
14 Return σ

Oracle Vfy(i,m, σ)
15 Require 1 ≤ i ≤ n
16 b← vfyS(vfki,m, σ)
17 If i /∈ XP ∧ (m,σ) 6= msi:
18 Reward b
19 Return b

Figure 2.3: Security experiment SUF, modeling the one-time strong unforgeability
of a signature scheme in a multi-instance setting. Variable ms records the message-
signature combination processed by the signer.

a public key pk ∈ PK. We also use a shorthand form, writing genK
for the randomized procedure of first picking sk ←$ SK, then deriving
pk ← genK(sk), and finally outputting the pair (sk, pk). Two shortcut
notations for key generation are thus

SK → genK → PK genK →$ SK × PK .

The randomized encapsulation algorithm enc takes a public key pk ∈
PK and outputs a symmetric key k ∈ K and a ciphertext c ∈ C,
and the deterministic decapsulation algorithm dec takes a secret key
sk ∈ SK and a ciphertext c ∈ C, and outputs either a symmetric key
k ∈ K or the special symbol ⊥ /∈ K to indicate rejection. Shortcut
notations for encapsulation and decapsulation are thus

PK → enc→$ K × C SK × C → dec→ K ∪ {⊥} .

For correctness we require that for all (sk, pk) ∈ [genK] and (k, c) ∈
[enc(pk)] we have dec(sk, c) = k.
For security of KEMs we formalize a multi-receiver/multi-challenge

version of one-way security—as opposed to strictly stronger key indis-
tinguishability—which is sufficient for our purposes. In this notion,

31

2 Preliminaries

the adversary obtains challenge ciphertexts and has to recover any of
the encapsulated keys. The adversary is supported by a key-checking
oracle that, for a provided pair of ciphertext and (candidate) symmet-
ric key, tells whether the ciphertext decapsulates to the indicated key.
The adversary is also allowed to establish new receivers, or to expose
them, meaning to learn their secret keys. The details of this notion
are in game OW in Figure 2.4. For a KEM K, we associate with any
adversary A its one-way advantage Advow

K (A) ..= Pr[OWK(A) ⇒ 1].
Intuitively, a KEM is secure if all practical adversaries have a negligi-
ble advantage.

Game OWK(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (skn, pkn)←$ genK
05 CKn[·]← ⊥
06 Return pkn
Oracle Enc(i)
07 Require 1 ≤ i ≤ n
08 (k, c)←$ enc(pki)
09 CKi[c]← k
10 Return c

Oracle Solve(i, c, k)
11 Require 1 ≤ i ≤ n
12 Require i /∈ XP
13 Require CKi[c] 6= ⊥
14 Reward k = CKi[c]
15 Return

Oracle Check(i, c, k)
16 Require 1 ≤ i ≤ n
17 k′ ← dec(ski, c)
18 Return [k′ = k]

Oracle Expose(i)
19 Require 1 ≤ i ≤ n
20 XP ∪← {i}
21 Return ski

Figure 2.4: Security experiment OW, modeling the one-way security of a KEM
in a multi-receiver/multi-challenge setting. Variable n indicates the number of
established receivers, set XP keeps track of the receivers that are exposed, and
for each receiver i the associative array CKi keeps track of the ciphertexts and
symmetric keys that are processed in Enc queries.

Our variant of one-wayness is equivalent to the standard notion
with only one receiver, one challenge encapsulation, and no exposure.
However, the corresponding reduction loses a factor of nm,1 where
n is the total number of receivers and m is the total number of chal-

1For all KEM applications in this thesis we actually have m = 1, i.e., the security
loss is effectively only by a factor of n.

32

2.3 Cryptographic Building Blocks

lenge encapsulations per receiver: The receiver for which the adversary
successfully recovers the symmetric key is guessed, and the n − 1 re-
maining receivers are simulated with knowledge of their secret key;
further, the later-broken encapsulation query of the identified user is
guessed, and the remaining encapsulation queries are simulated using
the regular encapsulation algorithm.

2.3.5 Further Building Blocks

Cryptographic building blocks that we only consider informally in this
thesis or exclusively in our symbolic model in Chapter 5 are hierarchi-
cal identity-based KEM and broadcast encryption. Below we define
their syntax formally but only provide an intuition for their security
guarantees. For formal security definitions we refer the reader to the
respective literature (e.g., [GS02, FN94]).

Hierarchical Identity-Based Encryption Hierarchical identity-
based key encapsulation mechanism (HIBE)2 is a variant of KEM
where the encapsulation algorithm takes, in addition to the public
key, an identity vector. From the according secret key further identity-
specific secret keys can be delegated such that an identity vector as
input to the encapsulation specifies, which delegated identity-specific
secret keys can be used for successful decapsulation.

Formally, an HIBE scheme for a finite symmetric-key space K and a
finite identity space ID is a quadruple HK = (genHK, enc, dec, del) of
algorithms together with a samplable secret-key space SK, a public-
key space PK, and a ciphertext space C. Algorithms genHK and dec
conform their KEM equivalents. The randomized encapsulation algo-
rithm enc takes a public key pk ∈ PK and an identity vector id ∈ ID∗,
and outputs a symmetric key k ∈ K and a ciphertext c ∈ C, and the
delegation algorithm del takes a secret key sk ∈ SK and an identity
string id ∈ ID, and outputs another secret key sk ∈ SK. Shortcut

2For simplicity, we avoid the acronym HIB-KEM here.

33

2 Preliminaries

notations for encapsulation and delegation are thus

PK × ID∗ → enc→$ K × C SK × ID → del→ SK .

For correctness we require that for all (sk0, pk) ∈ [genHK] and id ∈
ID∗, with id = id1 ‖ . . . ‖ id l such that ∀i ∈ [l] idi ∈ ID and ski =
del(ski−1, idi), and (k, c) ∈ [enc(pk, id)] we have dec(sk l, c) = k.
A secure HIBE intuitively guarantees that a symmetric key, encap-

sulated to a public key pk and an identity vector id ∈ ID∗, cannot be
decapsulated by a (practical) adversary even with access to any secret
keys, derived via delegations from pk’s secret key sk under an identity
vector id ′ ∈ ID∗ such that id ′ is not a prefix of id.

Broadcast Encryption Broadcast encryption (BE) is a variant of
public key encryption where the encryption algorithm takes, in addi-
tion to a message and a (main) public key, a subset of the natural
numbers. This subset refers to users—each of them referenced by a
unique contained number—who are excluded from being able to de-
crypt the encrypted message with their secret key that they registered
from the according main secret key.
Formally, a BE scheme for a message space M is a quadruple

BE = (genBE, encBE, dec, reg) of algorithms together with a samplable
main secret-key space MSK, a (registered) secret-key space SK, a
(main) public-key space MPK, and a ciphertext space C. Algo-
rithms genBE and dec conform their KEM equivalents in principle,
except that algorithm genBE outputs a main key pair (instead of
a standard key pair) and algorithm dec generically outputs a mes-
sage m ∈ M (instead of a key as usual for public key encryption).
Shortcut notations for key pair generation and decryption are thus

MSK → genBE →MPK genBE →$ MSK×MPK

SK × C → dec→M∪ {⊥}.

The randomized encryption algorithm encBE takes a (main) public
key pk ∈ MPK a finite set RM ⊂ N, and a message m ∈ M, and

34

2.3 Cryptographic Building Blocks

outputs a ciphertext c ∈ C, and the randomized registration algorithm
reg takes a main secret key msk ∈MSK and a natural number u ∈ N,
and outputs a registered secret key sk ∈ SK. Shortcut notations for
encryption and registration are thus

MPK×P(N)×M→ encBE →$ C MSK × N→ reg→ SK .

For correctness we require that for all (msk,mpk) ∈ [genBE] and u ∈ N
and sk ∈ [reg(msk, u)] and RM ⊂ N \ {u} and c ∈ [encBE(mpk,
RM ,m)] we have dec(sk, c) = m.

A secure BE scheme intuitively guarantees that a message, en-
crypted to a (main) public key mpk with a set of removed users RM ,
cannot be decrypted by a (practical) adversary even with access to
any secret keys, registered under mpk’s main secret key msk for num-
bers u ∈ RM .
We note that our (correctness) notion of BE requires that from each

main secret key an infinite number of secret keys can be registered.
Although this is neither standard nor practical, this notion of BE
used in the symbolic model of Chapter 5 strengthens our results (with
respect to practice).

2.3.6 Random Oracle Model

For allowing simple, comprehensible, and clear proofs of security in
this work, in some of our reduction proofs we make use of the random
oracle model that idealizes (security) guarantees of hash functions.
In the random oracle model a hash function H with input of arbi-

trary length bit strings from space {0, 1}∗ and output of fixed length
bit strings from space {0, 1}l is modeled as a random function from
the set of all functions over these input and output spaces. Shortcut
notion for the modeled hash function is thus

{0, 1}∗ → H→ {0, 1}l .

Adversaries, attacking constructions in the random oracle model, only
have oracle-access to function H, meaning that for input x ∈ {0, 1}∗

35

2 Preliminaries

they can obtain output y ∈ {0, 1}l only by querying the model on x
where y = H(x). In particular, adversaries are not able to directly
access the function description of H in order to evaluate H on input x
themselves.
When being deployed, schemes proven secure in the random ora-

cle model are implemented with a hash function that is assumed to
behave like a random function (i.e., whose outputs are indistinguish-
able from random outputs for practical adversaries). It has to be
noted that there exist example schemes, provably secure in the ran-
dom oracle model, that become entirely insecure when the modeled
hash function is instantiated by any practically implementable (hash)
function [CGH98b, BBP04, MRH04]. These schemes are, however,
contrived and artificial and therefore do not invalidate the meaning of
proofs in the random oracle for real-world implementations of respec-
tively analyzed practical schemes per se. The random oracle model
particularly simplifies security analyses of practical cryptographic pro-
tocols, and as of yet there exists no attack against a practical scheme
that is caused by the gap between the random oracle model and a re-
spective instantiation with a real hash function. Hence, the use of the
random oracle model is a widespread approach in the cryptographic
literature.
As a result, we agree with Shai Halevi’s conclusion [CGH98a, 6.3]

that proofs in the random oracle model appear to be useful since it is
unclear whether the mentioned counterexamples apply to entirely dif-
ferent uses of random oracles. Furthermore, we note that many other
unrealistic idealizing assumptions in common security analyses repre-
sent significantly more serious gaps between proved statements and
actual security guarantees of practical deployments. To mention two
of these gaps, considered and closed in our work, secrets of victims are
in many security models inaccessible for adversaries during the entire
lifetime of their protocol execution, and random coins of probabilistic
algorithm invocations are in many security models sampled from a
uniform distribution. Neither of both can be guaranteed in practice.
Another significant idealization are symbolic execution models that
were already introduced and discussed in Section 2.1.2.

36

2.3 Cryptographic Building Blocks

Hence, the ultimate goal of cryptographic analyses is to aim for se-
curity proofs that hold in the standard model (i.e., not in the random
oracle model) under consideration of exposure of secrets, deviations
in randomness distributions, subversion of implementations, leakage
of execution time, etc. Nevertheless, security proofs that make (par-
tially or even entirely) unrealistic idealizations can be initial steps of
cryptographic analyses and regularly support the understanding of the
considered constructions.

37

3
Optimally Secure Ratcheting in

Two-Party Settings

Contents

3.1 Introduction . 41
3.2 Key-updatable Key Encapsulation Mechanisms 47
3.3 Unidirectionally ratcheted key exchange (URKE) . . . 51
3.4 Constructing URKE 57
3.5 Sesquidirectionally ratcheted key exchange (SRKE) . . 60
3.6 Constructing SRKE 66
3.7 Rationales for SRKE Design 72
3.8 Bidirectionally ratcheted key exchange (BRKE) 78
3.9 Constructing BRKE 80
3.10 Proof of URKE . 86
3.11 Proof of SRKE . 95
3.12 Proof of BRKE . 113
3.13 Modeling ratcheted key exchange 117

Ratcheted key exchange (RKE) is a cryptographic technique used in
almost all modern instant messaging systems (e.g., Signal and the
WhatsApp messenger) for attaining strong security in the face of state
exposure attacks. Abstractly, RKE continuously computes symmetric
keys for two (or more) parties that they can use in higher level sym-
metric protocols (e.g., a secure channel). During the computation of
these symmetric keys, each participant updates their used local state
such that exposures thereof only have temporary effect on the keys’
secrecy.

39

3 Optimally Secure Ratcheting in Two-Party Settings

RKE initially received academic attention in the recent works of
Cohn-Gordon et al. [CCD+17] and Bellare et al. [BSJ+17]. While the
former is analytical in the sense that it aims primarily at assessing
the security that one particular protocol does achieve (which might
be weaker than the notion that it should achieve), the authors of the
latter develop and instantiate a notion of security from scratch, inde-
pendently of existing implementations. Unfortunately, however, their
model is quite restricted, e.g. for considering only unidirectional com-
munication and the exposure of only one of the two communication
participants.
In this chapter, of which parts previously were published as an ex-

tended abstract in the proceedings of CRYPTO 2018 [PR18b], we
resolve the limitations of prior work by developing alternative secu-
rity definitions, for unidirectional RKE as well as for RKE where both
participants contribute. We follow a purist approach, aiming at find-
ing strong yet convincing notions that cover a realistic communication
model with fully concurrent operation of both participants. We fur-
ther propose secure instantiations (as the protocols analyzed or pro-
posed by Cohn-Gordon et al. and Bellare et al. turn out to be weak in
our models). While our scheme for the unidirectional case builds on
a generic KEM as the main building block (differently to prior work
that requires explicitly Diffie–Hellman), our schemes for bidirectional
RKE require a stronger, HIBE-like component.

Contributions by the Author All formal work in this chapter
except for the correctness and security games from figures 3.5, 3.6,
3.8, 3.9, 3.11, and 3.12 was contributed by the author of this thesis.
Both authors of the original paper [PR18b] participated in writing the
textual descriptions but the majority in this chapter was contributed
by the author of this thesis, as well. The extended abstract [PR18b]
that was published in the proceedings of CRYPTO 2018 only cov-
ers security definitions and constructions of unidirectional RKE and
sesquidirectional RKE (from sections 3.3 and 3.5, and sections 3.4
and 3.6, respectively). This chapter additionally contains formal se-

40

3.1 Introduction

curity proofs for these constructions (in sections 3.10 and 3.11) as
well as a security definition of bidirectional RKE and an instantia-
tion thereof that is also proven secure (in sections 3.8, 3.9, and 3.12).
Furthermore, we here discuss our approach of defining security and
compare it with classical models for authenticated key agreement (see
Section 3.13).

3.1 Introduction

While the word ratcheting is sometimes associated with a set of tech-
niques deployed with the aim of achieving certain (typically not for-
mally defined) security goals, Bellare et al. recently pursued a different
approach by proposing ratcheted key exchange (RKE) as a crypto-
graphic primitive with clearly defined syntax, functionality, and se-
curity properties [BSJ+17]. This primitive establishes a sequence of
symmetric session keys that allows for the construction of higher-level
protocols, where instant messaging is just one example.1 Building a
messaging protocol on top of RKE—and thereby splitting the compu-
tation of symmetric keys and the protection of payload messages that
uses these keys—offers clear advantages over using ad-hoc designs (as
all messaging apps we are aware of do): the modularity allows for eas-
ier cryptanalysis, the substitution of constructions by alternatives, etc.
We note, however, that the RKE formalization considered in [BSJ+17]
is too limited to serve directly as a building block for secure messaging.
In particular, the syntactical framework requires all communication
to be unidirectional (in the Alice-to-Bob direction), and the security
model counterintuitively assumes that exclusively Alice’s local state
can be exposed. (Unidirectional RKE is described in the top left part
of Figure 3.1; note that the syntax in [BSJ+17] omits associated-data

1Note that RKE, despite its name, is a tool to be used in the ‘symmetric phase’
of a protocol that follows the preliminary key agreement. This key agreement
initially provides two protocol participants a shared key from which they can
derive corresponding local states (e.g., to initiate an RKE session). In [BSJ+17],
and also in this chapter, the initial key agreement is abstracted away into a
dedicated state initialization algorithm (or: protocol).

41

3 Optimally Secure Ratcheting in Two-Party Settings

inputs.)
U
ni
di
re
ct
io
na

lR
K
E

init$

stA stB
cad ad

k ksnd$ rcv
stA stB

cad ad
k ksnd$ rcv

stA stB
cad ad

k ksnd$ rcv Se
sq
ui
di
re
ct
io
na

lR
K
E

init$

stA stB
cad ad

k ksnd$ rcv
stA stB

c
ad ad
k snd$ snd$

stA stB
c

ad ad
k

rcv rcv

Bi
di
re
ct
io
na

lR
K
E

init$

stA stB
cad ad

k ksnd$ rcv
stA stB

c
ad ad
k ksnd$ snd$

stA stB
c

ad ad
k k

rcv rcv

Figure 3.1: Concept of uni-, sesqui-, and bidirectional RKE: In unidirectional
RKE Alice only sends and Bob only receives, and in bidirectional RKE both parties
participate equally. Bob sending to Alice in sesquidirectional RKE only allows Bob
to update his state and to share corresponding information with Alice without
establishing new symmetric keys. ‘$’ in the upper index of an algorithm indicates
that it runs probabilistically and ad is associated data.

We give more details on the results of [BSJ+17]. In the proposed
protocol, Alice’s state has the form stA = (i, k.p, Y), where integer i
counts her send operations, k.p is a key for a PRF prf, and Y = gy is
a public key of Bob. Bob’s state has the form stB = (i, k.p, y). When
Alice performs a send operation, she samples fresh randomness x, com-
putes τ ← prf(k.p, gx) and (k, k.p′) ← H(i, τ, gx, Y x) where prf is a
PRF and H is a random oracle, and outputs k as the established sym-
metric session key and c = (gx, τ) as a ciphertext that is sent to Bob.

42

3.1 Introduction

(Value τ serves as a message authentication code for gx.) The next
round’s PRF key is k.p′, i.e., Alice’s new state is stA = (i+ 1, k.p′, Y).
In this protocol, observe that prf and H together implement a ‘hash
chain’ and lead to forward-secrecy, while the gx, Y x inputs to the ran-
dom oracle can be seen as implementing one DHKE per transmission
(where one exponent is static). Turning to the accordingly proposed
RKE security model, while the corresponding game offers an oracle
that allows adversaries to compromise Alice’s state, there is no op-
tion for similarly exposing Bob. If the model had a corresponding
oracle, the protocol would actually not be secure. Indeed, the follow-
ing (fully passive) attack exploits that Alice ‘encrypts’ to always the
same key Y of Bob: The adversary first reveals Alice’s local state,
learning stA = (i, k.p, Y); it then makes Alice invoke her send rou-
tine a couple of times and delivers the respective ciphertexts to Bob’s
receive routine in unmodified form; in the final step the adversary
exposes Bob and recovers his past symmetric session keys using the
revealed constant exponent y from state stB. Note that in a pure
RKE sense these session keys could (and should) remain unknown to
the adversary: Alice should have recovered from the state exposure,
and forward-secrecy should have made revealing Bob’s state useless.2

Overview We follow in the footsteps of [BSJ+17] and study RKE as
a general cryptographic primitive. However, we significantly improve
on their results, in three independent directions:
Firstly, we extend the strictly unidirectional RKE concept of Bel-

lare et al. towards bidirectional communication. In more detail, if we
refer to the setting of [BSJ+17] as URKE (unidirectional RKE), we
introduce SRKE (sesquidirectional3 RKE) and BRKE (bidirectional
RKE). In SRKE, while both Alice and Bob can send ciphertexts to the
respective peer, only the ciphertexts sent from Alice to Bob establish
session keys. Those sent by Bob have no direct functionality but may

2A protocol that achieves security in the described setting is developed in this
chapter; the central idea behind our construction is that Bob’s key pair (y, Y)
does not stay fixed but is updated each time a ciphertext is processed.

3Recall that ‘sesqui’ is Latin for one-and-a-half.

43

3 Optimally Secure Ratcheting in Two-Party Settings

help him healing from state exposure. Also in BRKE both parties
send ciphertexts, but here the situation is symmetric in that all ci-
phertexts establish keys (plus allow for healing from state exposure).
As fully bidirectional RKE is the ultimate goal, URKE and SRKE
introduce the necessary building blocks—both regarding the security
model and the instantiation. Consequently we introduce them one
after another. A conceptual and syntactical overview over all three
primitives is in Figure 3.1.
Secondly, we propose an improved security model for URKE, and

introduce security models for SRKE and BRKE. Our bidirectional
models assume the likely only practical communication setting for
messaging protocols, namely the one in which the operations of both
parties can happen concurrently (in contrast to, say, according to a
ping-pong pattern). We develop our models following a purist ap-
proach: We start with giving the adversary the full set of options to
undertake its attack (including state exposures of both parties), and
then exclude, one by one, those configurations that unavoidably lead
to a ‘trivial win’ (an example for the latter is if the adversary first
compromises Bob’s state and then correctly ‘guesses’ the next session
key he recovers from an incoming ciphertext). This approach leads to
strong and convincing security models (and it becomes quite challeng-
ing to actually meet them). We note that the (as we argued) insecure
protocol from [BSJ+17] is considered secure in the model of [BSJ+17]
because the latter was not designed with our strategy in mind, ulti-
mately missing some attacks.
Thirdly, we give provably secure constructions of URKE, SRKE,

and BRKE. While all prior RKE protocol proposals, including the
one from [BSJ+17], are explicitly based on DHKE as a low-level tool,
our constructions use generic primitives like KEMs, MACs, one-time
signatures, and random oracles. The increased level of abstraction not
only clarifies on the role that these components play in the construc-
tions, it also increases the freedom when picking acceptable hardness
assumptions.

Further details on our URKE construction. In brief, our

44

3.1 Introduction

(unidirectional) URKE scheme combines a hash chain and KEM en-
capsulations to achieve both forward-secrecy and recoverability from
state exposures. The crucial difference to the protocol from [BSJ+17]
is that in our scheme the public key of Bob is changed after each use.
Concretely, but omitting many details, the state information of Alice
is (i, k.p, Y) as in [BSJ+17] (but where Y is the current public key
of Bob), for sending Alice freshly encapsulates a key k∗ to Y , then
computes (k, k.p′, k.u′) ← H(i, k.p, Y, k∗) using a random oracle H,
and finally uses auxiliary key k.u′ to update the old public key Y to
a new public key Y ′ that is to be used in her next sending operation.
Bob does correspondingly, updating his secret key with each incoming
ciphertext. Note that the attack against [BSJ+17] that we sketched
above does not work against this protocol (the adversary would obtain
a useless decryption key when revealing Bob’s state).

Further details on our SRKE construction. Recall that, in
SRKE, Bob can send update ciphertexts to Alice with the idea that
this will help him to recover from state exposures. Our protocol al-
gorithms can handle fully concurrent operation of the two partici-
pants (in particular, ciphertexts may ‘cross’ on the wire). This un-
fortunately adds, as the algorithms need to handle multiple ‘epochs’
(i.e., execution slots divided by send operations of Bob) at the same
time, considerably to their complexity. Interestingly, the more in-
volved communication setting is also reflected in stronger primitives
that we require for our construction: Our SRKE construction builds
on a special KEM type that supports so-called key updates (also the
latter primitive is constructed in this chapter, from HIBE).
In a nutshell, in our SRKE construction, Bob heals from state ex-

posures by generating a fresh (updatable) KEM key pair every now
and then, and communicating the public key to Alice. Alice uses the
key update functionality to ‘fast-forward’ these keys into a current
state by making them aware of ciphertexts that were exchanged after
the keys were sent (by Bob), but before they were received (by Alice).
In her following sending operation, Alice encapsulates to a mix of old
and new public keys.

45

3 Optimally Secure Ratcheting in Two-Party Settings

Further details on our BRKE construction. We have two
BRKE constructions. The first works via the amalgamation of two
generic SRKE instances, deployed in reverse directions. To reach
full security, the instances need to be carefully tied together, which
we do via one-time signatures (akin to the CHK transform [MRY04,
CHK04]). The second construction is less generic, namely by combin-
ing and interleaving the building blocks of our SRKE scheme in the
right way. The advantage of the second scheme is that its ciphertexts
are shorter (it saves precisely the one-time signatures).
Introducing SKRE as a natural building block for BRKE is conse-

quently of particular value.

Related Constructions and Analyses The idea of mixing into
the user state of messaging protocols additional key material that is
continuously established with asymmetric techniques (in particular:
DHKE) first appeared in the off-the-record (OTR) messaging pro-
tocol from [OTR16, BGB04] and thereafter in further protocols like
the ZRTP telephony protocol [ZJC11] and the Double Ratchet Algo-
rithm [PM16] (formerly known as Axolotl).
For the formal analysis of this latter protocol, Cohn-Gordon et

al. [CCD+17] develop a “model with adversarial queries and freshness
conditions that capture the security properties intended by Signal”.
Consequently, this model is not (primarily) aimed to serve as a refer-
ence notion for RKE. Also the line of multi-stage key exchange model
frameworks by Fischlin and Günther [FG14, DFGS15, FG17], that
served as a basis for the model used by Cohn-Gordon et al. [CCD+17],
generally considers state updates and the continuous agreement of au-
thenticated keys. Therefore, when compared to our work, these frame-
works first and foremost can be seen as an alternative style of formally
defining security since neither of them specifically considers security
of RKE. In contrast, Cohn-Gordon et al. [CCG16] survey approaches
in the literature for security of authenticated key agreement in the
face of state exposures and propose a specific model.

46

3.2 Key-updatable Key Encapsulation Mechanisms

3.2 Key-updatable Key Encapsulation
Mechanisms

We introduce a type of KEM that we refer to as key-updatable. Like
a regular KEM the new primitive establishes secure symmetric session
keys, but in addition a dedicated key-update algorithm updates the
components of the asymmetric key pair: Also taking an auxiliary
input into account that we call the associated data, a secret key is
updated to a new secret key, or a public key is updated to a new
public key. A KEM key pair remains functional under such updates,
meaning that symmetric session keys encapsulated for the public key
can be recovered using the secret key if both (asymmetric) keys are
updated compatibly, i.e., with matching associated data. Concerning
security we require a kind of forward-secrecy: Briefly, session keys
encapsulated to a (potentially updated) public key shall remain secure
even if the adversary gets hold of any incompatibly updated version
of the secret key. The syntactical concept of key-updatable KEM is
shown in Figure 3.2.

K
ey
-u
pd

at
ab

le
K
EM

gen$

pk

pk

sk
ad adup up

pk sk
ad adup up

pk sk
c

k kenc$ dec

Figure 3.2: Conceptual depiction of kuKEM. ‘$’ in the upper index of an algorithm
name denotes that the algorithm runs probabilistically and ad is associated data.

This stronger variant of KEM is used as a core building block for

47

3 Optimally Secure Ratcheting in Two-Party Settings

our SRKE and BRKE constructions in sections 3.6 and 3.9. Since
our instantiation of this building block, introduced below, is relatively
inefficient—implying inefficiency of our SRKE and BRKE construc-
tions—we specifically analyze in Chapter 4 under which conditions
key-updatable KEMs are indeed necessary and sufficient to realize
secure ratcheted key exchange.
A key-updatable key encapsulation mechanism (kuKEM) for a finite

session-key space K is a quadruple K = (genK, enc, dec, up) of algo-
rithms together with a samplable secret-key space SK, a public-key
space PK, a ciphertext space C, and an associated-data space AD.
Algorithms genK, enc, dec are as for regular KEMs. The key-update
algorithm up is deterministic and comes in two shapes: either it takes
a secret key sk ∈ SK and associated data ad ∈ AD and outputs an
updated secret key sk ′ ∈ SK, or it takes a public key pk ∈ PK and as-
sociated data ad ∈ AD and outputs an updated public key pk ′ ∈ PK.
Shortcut notations for the key update algorithm(s) are thus

SK ×AD → up→ SK PK ×AD → up→ PK .

For correctness we require that for all (sk0, pk0) ∈ [genK] and ad1, . . . ,
adn ∈ AD, if we let ski = up(ski−1, adi) and pki = up(pki−1, adi) for
all i, then for all (k, c) ∈ [enc(pkn)] we have dec(skn, c) = k.
As a security property for kuKEMs we formalize a multi-receiver/

multi-challenge version of one-way security that also reflects forward-
secrecy in case of secret-key updates. The details of the notion are
in game KUOW in Figure 3.3. For a key-updatable KEM K, we
associate with any adversary A its one-way advantage Advkuow

K (A) ..=
Pr[KUOWK(A) ⇒ 1]. Intuitively, a kuKEM is secure if all practical
adversaries have a negligible advantage.
We extend our definition for regular KEMs by allowing the adver-

sary to also update the public keys held by senders (encryptors) and
the secret keys held by receivers, such that if a sender performs s-many
updates using associated data from the list ads = ad1 ‖ . . . ‖ ads, a re-
ceiver performs r-many updates using associated data from the list
adr = ad ′1 ‖ . . . ‖ ad ′r, and the receiver is then exposed, then session

48

3.2 Key-updatable Key Encapsulation Mechanisms

Game KUOWK(A)
00 n← 0
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (skn, pkn)←$ genK
05 CKn[·]← ⊥; XPn ← ∅
06 adsn ← ε; adrn ← ε
07 SKn[·]← ⊥
08 SKn[adrn]← skn
09 Return pkn
Oracle UpS(i, ad)
10 Require 1 ≤ i ≤ n
11 pki ← up(pki, ad)
12 adsi q← ad
13 Return pki
Oracle Enc(i)
14 Require 1 ≤ i ≤ n
15 (k, c)←$ enc(pki)
16 CKi[adsi, c]← k
17 Return c

Oracle Solve(i, ad, c, k)
18 Require 1 ≤ i ≤ n
19 Require ad /∈ XPi
20 Require CKi[ad, c] 6= ⊥
21 Reward k = CKi[ad, c]
22 Return

Oracle UpR(i, ad)
23 Require 1 ≤ i ≤ n
24 ski ← up(ski, ad)
25 adr i q← ad
26 SKi[adr i]← ski
27 Return

Oracle Check(i, ad, c, k)
28 Require 1 ≤ i ≤ n
29 Require SKi[ad] 6= ⊥
30 k′ ← dec(SKi[ad], c)
31 Return [k′ = k]

Oracle Expose(i)
32 Require 1 ≤ i ≤ n
33 XPi ∪← {A ∈ AD∗ :

adr i � A}
34 Return ski

Figure 3.3: Security experiment KUOW, modeling the one-way security of a key-
updatable KEM in a multi-receiver/multi-challenge setting. Oracles UpS and UpR

update senders and receivers, respectively, and for each receiver i the lists adsi

and adr i record the associated data used for updating the corresponding sender
and receiver keys, respectively. See Figure 2.4 for an explanation of the other game
variables. The instruction in line 33 adjoins to set XPi the set of all adr i-prefixed
sequences of associated data.

keys encapsulated by the sender for the receiver remain hidden from
the adversary if keys were updated inconsistently (with conflicting as-
sociated data, or too often on the receiver side), i.e., technically, if
adr � ads (adr is a not a prefix of ads).

Constructing key-updatable KEMs. Observe that kuKEMs are
related to hierarchical identity-based encryption (HIBE, [GS02]): In-
tuitively, updating a secret key using associated data ad in the kuKEM

49

3 Optimally Secure Ratcheting in Two-Party Settings

world corresponds in the HIBE world with delegating the decryp-
tion/delegation key for the next-lower hierarchy level, using partial
identity ad. Indeed, a kuKEM scheme is immediately constructed
from a generic HIBE, with only cosmetic changes necessary when an-
notating the algorithms; a construction is provided in Figure 3.4. Also
the security reduction from kuKEM to HIBE is immediate.

Proc genK
00 (sk, pk)←$ genHK
01 ad0 ← ε
02 sk ←$ delHK(sk, ad0)
03 id ← ad0; pk ← (pk, id)
04 Return (sk, pk)

Proc up(pk, ad)
05 (pk ′, id)← pk
06 pk ← (pk ′, id ‖ ad)
07 Return pk

Proc enc(pk)
08 (pk ′, id)← pk
09 (k, c)←$ encHK(pk ′, id)
10 Return (k, c)

Proc dec(sk, c)
11 k ← decHK(sk, c)
12 Return k

Proc up(sk, ad)
13 sk ← delHK(sk, ad)
14 Return sk

Figure 3.4: Construction of a key-updatable KEM from a generic HIBE. The
delegation operation during key generation in line 02 is necessary as some HIBEs
(for instance the Gentry–Silverberg scheme [GS02]) do not support encapsulating
to the root node of the hierarchy; our construction thus does the first descent
during key setup.

While HIBE schemes generically imply kuKEMs, it is unclear whether
the same holds in the reverse direction, i.e., whether HIBEs can be
constructed from kuKEMs. The crucial observation is that kuKEMs
support only one strand of secret-key updates (recall our KUOW no-
tion says nothing about what happens when a receiver duplicates its
secret key and updates it twice, with different associated data), while
HIBE schemes support at least two subidentities per node. Indeed, a
(separating) example of a secure kuKEM that results in a weak HIBE
when converted in the intuitive way is easily found.4 Our conclusion
is that while all kuKEM constructions we are aware of require HIBE

4For instance, conceptually, when updating a secret key to a new one, the kuKEM
could secret-share the old key using a two-out-of-two threshold scheme, ran-
domly pick one of the shares and include it in the new key, discarding the other
share. While this would not hurt kuKEM security, a naively derived HIBE

50

3.3 Unidirectionally ratcheted key exchange (URKE)

and thus practically undesirable building blocks like pairings or lat-
tices, kuKEMs seem to be a strictly weaker primitive than HIBE, so
it is more likely to find constructions in the bare DLP setting. We
leave it as an open problem to find such a construction.

3.3 Unidirectionally ratcheted key exchange
(URKE)

We give a definition of unidirectional RKE and its security. While, in
principle, our syntactical definition is in line with the one from [BSJ+17],
our naming convention deviates significantly from the latter for the
sake of a more clear distinction between (session) keys, (session) states,
and ciphertexts5 and we stress that, looking ahead, our security notion
for URKE is—when only considering state exposures but disregarding
the leakage of used randomness—stronger than the one of [BSJ+17].
A speciality of our formalization is that we let the sending and receiv-
ing algorithms of Alice and Bob accept and process an associated-data
string [Rog02] that, for functionality, has to match on both sides.

A unidirectionally ratcheted key exchange (URKE) for a finite key
spaceK and an associated-data spaceAD is a triple R = (init, snd, rcv)
of algorithms together with a sender state space SA, a receiver state
space SB, and a ciphertext space C. The randomized initialization
algorithm init returns a sender state stA ∈ SA and a receiver state
stB ∈ SB. The randomized sending algorithm snd takes a state
stA ∈ SA and an associated-data string ad ∈ AD, and produces an
updated state st ′A ∈ SA, a key k ∈ K, and a ciphertext c ∈ C. Finally,
the deterministic receiving algorithm rcv takes a state stB ∈ SB, an
associated-data string ad ∈ AD, and a ciphertext c ∈ C, and either
outputs an updated state st ′B ∈ SB and a key k ∈ K, or the spe-

would be trivial to break.
5The mapping between our names (on the left of the equality sign) and the ones
of [BSJ+17] (on the right) is as follows: ‘(session) key’ = ‘output key’, ‘(ses-
sion) state’ = ‘session key plus sender/receiver key’, ‘ciphertext’ = ‘update
information’.

51

3 Optimally Secure Ratcheting in Two-Party Settings

cial symbol ⊥ to indicate rejection. A shortcut notation for these
syntactical definitions (conceptually shown in Figure 3.1) is

init →$ SA × SB
SA ×AD → snd →$ SA ×K × C

SB ×AD × C → rcv → (SB ×K) ∪ {(⊥,⊥)}

Correctness of URKE. Assume a sender and a receiver that were
jointly initialized with init. Then, intuitively, the URKE scheme is
correct if for all sequences (adi) of associated-data strings, if (ki) and
(ci) are sequences of keys and ciphertexts successively produced by
the sender on input the strings in (adi), and if (k′i) is the sequence of
keys output by the receiver on input the (same) strings in (adi) and
the ciphertexts in (ci), then the keys of the sender and the receiver
match, i.e., it holds that ki = k′i for all i.

We formalize this requirement via the FUNC game in Figure 3.5.6
Concretely, we say scheme R is correct if Pr[FUNCR(A)⇒ 1] = 0 for
all adversaries A. In the game, the adversary lets the sender and the
receiver process associated-data strings and ciphertexts of its choosing,
and its goal is to let the two parties compute keys that do not match
when they should. Variables sA and rB count the send and receive
operations, associative array ACA jointly records the associated-data
strings considered by and the ciphertexts produced by the sender,
flag isB is an indicator that tracks whether the receiver is still ‘in-
sync’ (in contrast to: was exposed to non-matching associated-data
strings or ciphertexts; note how the transition between in-sync and
out-of-sync is detected and recorded in lines 13,14), and associative
array KA records the keys established by the sender to allow for a
comparison with the keys recovered (or not) by the receiver. The cor-
rectness requirement boils down to declaring the adversary successful

6Formalizing correctness of URKE via a game might at first seem overkill. How-
ever, for SRKE and BRKE, which allow for interleaved interaction in two di-
rections, game-based definitions seem to be natural and notationally superior
to any other approach. For consistency we use a game-based definition also for
URKE.

52

3.3 Unidirectionally ratcheted key exchange (URKE)

(in line 17) if the sender and the receiver compute different keys while
still being in-sync. Note finally that lines 12,16 ensure that once the
rcv algorithm rejects, the adversary is notified of this and further
queries to the RcvB oracle are not accepted.

Game FUNCR(A)
00 sA ← 0; rB ← 0
01 ACA[·]← ⊥
02 isB ← T
03 KA[·]← ⊥
04 (stA, stB)←$ init
05 Invoke A
06 Stop with 0

Oracle SndA(ad)
07 (stA, k, c)←$ snd(stA, ad)
08 ACA[sA]← (ad, c)
09 KA[sA]← k
10 sA ← sA + 1
11 Return c

Oracle RcvB(ad, c)
12 Require stB 6= ⊥
13 If isB ∧ACA[rB] 6= (ad, c):
14 isB ← F
15 (stB, k)← rcv(stB, ad, c)
16 If stB = ⊥: Return ⊥
17 Reward isB ∧ k 6= KA[rB]
18 rB ← rB + 1
19 Return

Figure 3.5: Game FUNC for URKE scheme R.

Security of URKE. We formalize a key indistinguishability no-
tion for URKE. In a nutshell, from the point of view of the adversary,
keys established by the sender and recovered by the receiver shall
look uniformly distributed in the key space. In our model, the adver-
sary, in addition to scheduling the regular URKE operations via the
SndA and RcvB oracles, has to its disposal the four oracles ExposeA,
ExposeB, Reveal, and Challenge, used for exposing users by obtaining
copies of their current state, for learning established keys, and for re-
questing real-or-random challenges on established keys, respectively.
For an URKE scheme R, in Figure 3.6 we specify corresponding key
indistinguishability games KINDb

R, where b ∈ {0, 1} is the challenge
bit, and we associate with any adversary A its key distinguishing ad-
vantage Advkind

R (A) ..= |Pr[KIND1
R(A) ⇒ 1] − Pr[KIND0

R(A) ⇒ 1]|.
Intuitively, R offers key indistinguishability if all practical adversaries
have a negligible key distinguishing advantage.
Most lines of code in the KINDb games are tagged with a ‘ · ’ right

after the line number; to the subset of lines marked in this way we re-
fer to as the games’ core. Conceptually, the cores contain all relevant
game logic (participant initialization, specifications of how queries are

53

3 Optimally Secure Ratcheting in Two-Party Settings

Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · ACA[·]← ⊥; isB ← T
02 · KA[·]← ⊥; KB[·]← ⊥
03 XPA ← ∅
04 KNA ← ∅; KNB ← ∅
05 CHA ← ∅; CHB ← ∅
06 · (stA, stB)←$ init
07 · b′ ←$ A
08 Require KNA ∩ CHA = ∅
09 Require KNB ∩ CHB = ∅
10 · Stop with b′

Oracle SndA(ad)
11 · (stA, k, c)←$ snd(stA, ad)
12 · ACA[sA]← (ad, c)
13 · KA[sA]← k
14 · sA ← sA + 1
15 · Return c

Oracle ExposeA
16 XPA ∪← {sA}
17 · Return stA
Oracle Reveal(u, i)
18 · Require Ku[i] ∈ K
19 · k ← Ku[i]
20 Ku[i]← �
21 · Return k

Oracle RcvB(ad, c)
22 · Require stB 6= ⊥
23 · If isB ∧ACA[rB] 6= (ad, c):
24 · isB ← F
25 If rB ∈ XPA:
26 KNB

∪← [rB, ...]
27 · (stB, k)← rcv(stB, ad, c)
28 · If stB = ⊥: Return ⊥
29 If isB: k ← �
30 · KB[rB]← k
31 · rB ← rB + 1
32 · Return

Oracle ExposeB
33 KNB

∪← [rB, ...]
34 If isB:
35 KNA

∪← [rB, ...]
36 · Return stB
Oracle Challenge(u, i)
37 · Require Ku[i] ∈ K
38 · k ← b ? Ku[i] : $(K)
39 Ku[i]← �
40 CHu

∪← {i}
41 · Return k

Figure 3.6: Games KINDb, b ∈ {0, 1}, for URKE scheme R. We require � /∈ K,
and in Reveal and Challenge queries we require u ∈ {A,B}. If the notation in lines
26 or 38 is unclear, please consult Section 2.2.

answered, etc.); the code lines available only in the full game, i.e., the
untagged ones, introduce certain restrictions on the adversary that
are necessary to exclude trivial attacks (see below). The games’ cores
should be self-explanatory, in particular when comparing them to the
FUNC game, with the understanding that lines 18,37 (in Figure 3.6)
ensure that only keys can be revealed or challenged that actually have
been established before, and that line 38 assigns to variable k, depend-
ing on bit b, either the real key or a freshly sampled element from the

54

3.3 Unidirectionally ratcheted key exchange (URKE)

key space.
Note that, in the pure core code, the adversary can use the four

new oracles to bring itself into the position to distinguish real and
random keys in a trivial way. In the following we discuss five differ-
ent strategies to do so. We illustrate each strategy by specifying an
example adversary in pseudocode and we explain what measures the
full games take for disregarding the respective class of attack. (That
is, the example adversaries would gain high advantage if the games
consisted of just their cores, but in the full games their advantage is
zero.)
The first two strategies leverage on the interplay of Reveal and

Challenge queries; they do not involve exposing participants.

(a) The adversary requests a challenge on a key that it also reveals,
it requests two challenges on the same key, or similar. Example:
c ← SndA(ε); k ← Reveal(A, 0); k′ ← Challenge(A, 0); b′ ← [k = k′];
output b′. The full games, in lines 20,39, overwrite keys that are
revealed or challenged with the special symbol � /∈ K. Because of
lines 18,37, this prevents any second Reveal or Challenge query
involving the same key.

(b) The adversary combines an attack from (a) with the correctness
guarantee, i.e., that in-sync receivers recover the keys established
by senders. For instance, the adversary reveals a sender key and
requests a challenge on the corresponding receiver key. Example:
c ← SndA(ε); k ← Reveal(A, 0); RcvB(ε, c); k′ ← Challenge(B, 0); b′ ←
[k = k′]; output b′. The full games, in line 29, overwrite in-sync
receiver keys, as they are known (by correctness) to be the same
on the sender side, with the special symbol � /∈ K. By lines 18,37,
this rules out the attack.

The remaining three strategies involve exposing participants and using
their state to either trace their computations or impersonate them to
their peer. In the full games, the set variables XPA,KNA,KNB,CHA,
CHB (lines 03–05) help identifying when such attacks occur. Con-
cretely, set XPA tracks the points in time the sender is exposed (the

55

3 Optimally Secure Ratcheting in Two-Party Settings

unit of time being the number of past sending operations; see line 16),
sets KNA,KNB track the indices of keys that are ‘known’ (in partic-
ular: traceable and recoverable) by the adversary using an exposed
state (see below), and sets CHA,CHB record the indices of keys for
which a challenge was requested (see line 40). Lines 08,09 ensure that
any adversary that requests to be challenged on a known and trace-
able key has advantage zero. Strategies (c) and (d) are state tracing
attacks, while strategy (e) is based on impersonation.

(c) The adversary exposes the receiver and uses the obtained state
to trace its computations: By iteratively applying the rcv al-
gorithm to all later inputs of the receiver, and updating the
exposed state correspondingly, the adversary implicitly obtains
a copy of all later receiver keys. Example: c ← SndA(ε); st∗B ←
ExposeB(); (st∗B , k) ← rcv(st∗B , ε, c); RcvB(ε, c); k′ ← Challenge(B, 0);
b′ ← [k = k′]; output b′. When an exposure of the receiver hap-
pens, the full games, in line 33, mark all future receiver keys as
known.

(d) The adversary combines the attack from (c) with the correctness
guarantee, i.e., that in-sync receivers recover the keys established
by senders: After exposing an in-sync receiver, by iteratively
applying the rcv algorithm to all later outputs of the sender,
the adversary implicitly obtains a copy of all later sender keys.
Example: c ← SndA(ε); st∗B ← ExposeB(); (st∗B , k) ← rcv(st∗B , ε, c); k′ ←
Challenge(A, 0); b′ ← [k = k′]; output b′. When an exposure of an
in-sync receiver happens, the full games, in lines 34,35, mark all
future sender keys as known.

(e) Exposing the sender allows for impersonating it: The adver-
sary obtains a copy of the sender’s state and invokes the snd
algorithm with it, obtaining a key and a ciphertext. The latter
is provided to an in-sync receiver (rendering the latter out-of-
sync), who recovers a key that is already known to the adver-
sary. Example: st∗A ← ExposeA(); (st∗A, k, c) ←$ snd(st∗A, ε); RcvB(ε, c);
k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. The full games, in

56

3.4 Constructing URKE

lines 25,26, detect the described type of impersonation and mark
all future receiver keys as known.

We conclude with some notes on our URKE model. First, the model
excludes the (anyway unavoidable) trivial attack conditions we iden-
tified, but nothing else. This establishes confidence in the model, as
no attacks can be missed. Further, observe that it is not possible to
recover from an attack based on state exposure (i.e., of the (c)–(e)
types): If one key of a participant becomes weak as a consequence
of a state exposure, then necessarily all later keys of that participant
become weak as well. On the other hand, exposing the sender and not
bringing the receiver out-of-sync does not affect security at all.7 Fi-
nally, exposing an out-of-sync receiver does not harm later sender keys.
In later sections we consider ratcheting primitives (SRKE, BRKE)
that resume safe operation after state exposure attacks.

3.4 Constructing URKE

We construct an URKE scheme that is provably secure in the model
presented in the previous section. The ingredients are a KEM (with
deterministic public-key generation, see Chapter 2), a strongly un-
forgeable MAC, and a random oracle H. The algorithms of our scheme
are specified in Figure 3.7.
We describe protocol states and algorithms in more detail. The

state of Alice consists of (Bob’s) KEM public key pk, a chaining
key k.c, a MAC key k.m, and a transcript variable t that accumulates
the associated-data strings and ciphertexts that Alice processed so far.
The state of Bob is almost the same, but instead of the KEM public
key he holds the corresponding secret key sk. Initially, sk and pk are
freshly generated, random values are assigned to k.c and k.m, and the
transcript accumulator t is set to the empty string. A sending op-
eration of Alice consists of invoking the KEM encapsulation routine

7This is precisely the distinguishing auto-recovery property of ratcheted key ex-
change.

57

3 Optimally Secure Ratcheting in Two-Party Settings

with Bob’s current public key, sampling and attaching a random sym-
metric ‘collision’ key, computing a MAC tag over the ciphertext and
the associated data, updating the transcript accumulator, and jointly
processing the session key established by the KEM, the chaining key,
and the current transcript with the random oracle H. The output of H
is split into the URKE session key k.o, an updated chaining key, an
updated MAC key, and, indirectly, the updated public key (of Bob)
to which Alice encapsulates in the next round. The receiving oper-
ation of Bob is analogue to these instructions. We add the collision
key to the transmitted ciphertext only to avoid the use non-standard
assumptions (such as plaintext-awareness) in our proof. While our
scheme has some similarity with the one of [BSJ+17], a considerable
difference is that the public and secret keys held by Alice and Bob, re-
spectively, are constantly changed. This rules out the attack described
in Section 3.1.

Proc init
00 (sk, pk)←$ genK
01 k.c ←$ K; k.m ←$ K
02 t← ε
03 stA ← (pk, k.c, k.m, t)
04 stB ← (sk, k.c, k.m, t)
05 Return (stA, stB)

Proc snd(stA, ad)
06 (pk, k.c, k.m, t)← stA
07 (k, c)←$ enc(pk)
08 ck ←$ K
09 τ ← tag(k.m, ad ‖ c ‖ ck)
10 C ← c ‖ ck ‖ τ
11 t

q← ad ‖C
12 k.o ‖ k.c ‖ k.m ‖ sk ←

H(k.c, k, t)
13 pk ← genK(sk)
14 stA ← (pk, k.c, k.m, t)
15 Return (stA, k.o, C)

Proc rcv(stB, ad, C)
16 (sk, k.c, k.m, t)← stB
17 c ‖ ck ‖ τ ← C
18 Require vfyM(k.m, ad ‖ c ‖ ck, τ)
19 k ← dec(sk, c)
20 Require k 6= ⊥
21 t

q← ad ‖C
22 k.o ‖ k.c ‖ k.m ‖ sk ←

H(k.c, k, t)
23 stB ← (sk, k.c, k.m, t)
24 Return (stB, k.o)

Figure 3.7: Construction of an URKE scheme from a key-encapsulation mech-
anism K = (genK, enc, dec), a message authentication code M = (tag, vfyM), and
a random oracle H. For simplicity we denote the key space of the MAC and the
space of chaining keys and collision keys with the same symbol K.

Note that our scheme is specified such that participants accumulate
in their state the full past communication history. While this eases
the security analysis (random oracle evaluations of Alice and Bob are
guaranteed to be on different inputs once the in-sync bit is cleared),
it also seems to impose a severe implementation obstacle. However,

58

3.4 Constructing URKE

as current hash functions like SHA2 and SHA3 process inputs in an
online fashion (i.e., left-to-right with a small state overhead), they can
process append-only inputs like transcripts such that computations
are efficiently shared with prior invocations. In particular, with such
a hash function our URKE scheme can be implemented with constant-
size state. (This requires, though, rearranging the input of H such that
t comes first).8

Theorem 1 The URKE protocol R from Figure 3.7 offers key in-
distinguishability. More precisely, if function H is modeled as a ran-
dom oracle, for every adversary A against URKE scheme R in games
KINDb

R from Figure 3.6 there exists an adversary BK against KEM K
in game OW from Figure 2.4 and an adversary BM against MAC M
in game SUF from Figure 2.2 such that Advkind

R (A) ≤ Advow
K (BK) +

Advsuf
M (BM) + qH+1

|K| , where K is the (collision-)key space, the running
time of BK is about that of A plus qH key checking and solve opera-
tions, the running time of BM is about that of A, and qH is the number
of A’s random oracle queries.

For comprehensibility and didactic reasons we present the security
proofs for our constructions of URKE, SRKE, and BRKE together at
the end of this chapter. The proof of Theorem 1 is in Section 3.10.
Briefly, it first shows that none of Alice’s established session keys can
be derived by the adversary without breaking the security of the KEM
as long as no previous secret key of Alice’s public keys was exposed.
Then we show that Bob will only establish session keys out of sync if
Alice was impersonated towards him, his state was exposed before, the
adversary predicted a collision key, or a MAC forgery was conducted
by the adversary. The latter will be reduced to the security of the
MAC. Consequently the adversary either breaks one of the employed
primitives’ security or has information-theoretically small advantage
in winning the KIND game.

8A different approach to achieve a constant-size state is to replace lines 11 and 21
by the (non-accumulating) assignments t ← (ad, C). We believe our scheme
would also be secure in this case as, intuitively, chaining key k.c reflects the full
past communication.

59

3 Optimally Secure Ratcheting in Two-Party Settings

3.5 Sesquidirectionally ratcheted key
exchange (SRKE)

We introduce sesquidirectionally ratcheted key exchange (SRKE)3 as a
generalization of URKE. The basic functionality of the two primitives
is the same: Sessions involve two parties, A and B, where A can estab-
lish keys and safely share them with B by providing the latter with
ciphertexts. In contrast to the URKE case, in SRKE also party B
can generate and send ciphertexts (to A); however, B’s invocations
of the sending routine do not establish keys. Rather, the idea behind
B communicating ciphertexts to A is that this may increase the secu-
rity of the keys established by A. Indeed, as we will see, in SRKE it
is possible for B to recover from attacks involving state exposure. We
proceed with formalizing syntax and correctness of SRKE.

Formally, a SRKE scheme for a finite key space K and an associated-
data space AD is a tuple R = (init, sndA, rcvB, sndB, rcvA) of algo-
rithms together with a state space SA, a state space SB, and a cipher-
text space C. The randomized initialization algorithm init returns a
state stA ∈ SA and a state stB ∈ SB. The randomized sending al-
gorithm sndA takes a state stA ∈ SA and an associated-data string
ad ∈ AD, and produces an updated state st ′A ∈ SA, a key k ∈ K, and
a ciphertext c ∈ C. The deterministic receiving algorithm rcvB takes
a state stB ∈ SB, an associated-data string ad ∈ AD, and a cipher-
text c ∈ C, and outputs either an updated state st ′B ∈ SB and a key
k ∈ K, or the special symbol ⊥ to indicate rejection. The randomized
sending algorithm sndB takes a state stB ∈ SB and an associated-
data string ad ∈ AD, and produces an updated state st ′B ∈ SB and a
ciphertext c ∈ C. Finally, the deterministic receiving algorithm rcvA
takes a state stA ∈ SA, an associated-data string ad ∈ AD, and a
ciphertext c ∈ C, and outputs either an updated state st ′A ∈ SA or the
special symbol ⊥ to indicate rejection. A shortcut notation for these
syntactical definitions (conceptually shown in Figure 3.1) is

60

3.5 Sesquidirectionally ratcheted key exchange (SRKE)

init →$ SA × SB
SA ×AD → sndA →$ SA ×K × C

SB ×AD × C → rcvB → (SB ×K) ∪ {(⊥,⊥)}
SB ×AD → sndB →$ SB × C

SA ×AD × C → rcvA → SA ∪ {⊥} .

Correctness of SRKE. Our definition of SRKE functionality is via
game FUNC in Figure 3.8. We say scheme R is correct if Pr[FUNCR(A)
⇒ 1] = 0 for all adversaries A. In the figure, the lines of code
tagged with a ‘ · ’ right after the line number also appear in the URKE
FUNC game (Figure 3.5). In comparison with that game, there are
two more oracles, SndB and RcvA, and four new game variables,
sB, rA,ACB, isA, that control and monitor the communication in the
B-to-A direction akin to how SndA,RcvB, sA, rB,ACA, isB do (like in
the URKE case) for the A-to-B direction. In particular, the isA flag
is the in-sync indicator of party A that tracks whether the latter was
exposed to non-matching associated-data strings or ciphertexts (the
transition between in-sync and out-of-sync is detected and recorded in
lines 35,36). Given that the specifications of oracles SndA and RcvB
of figures 3.5 and 3.8 coincide (with one exception: lines 13,21 are
guarded by in-sync checks (in lines 12,20) so that parties go out-of-
sync not only when processing unauthentic associated data or cipher-
texts, but also when they process ciphertexts that were generated by
an out-of-sync peer9), and that also the specifications of oracles SndB
and RcvA of figures 3.8 are quite similar to them (besides the reversion
of the direction of communication, the difference is that all session-key
related components were stripped off), the logics of the FUNC game
in Figure 3.8 should be clear. Overall, like in the URKE case, the cor-
rectness requirement boils down to declaring the adversary successful,
in line 31, if A and B compute different keys while still being in-sync.

Epochs. The intuition behind having the B-to-A direction of com-
munication in SRKE is that it allows B to refresh his state every now

9This approach is borrowed from [MP17, EMP18].

61

3 Optimally Secure Ratcheting in Two-Party Settings

Game FUNCR(A)
00 · sA ← 0; rB ← 0
01 sB ← 0; rA ← 0
02 eA ← 0; EPA[·]← ⊥
03 E |<B ← 0; E>|

B ← 0
04 · ACA[·]← ⊥; isB ← T
05 ACB[·]← ⊥; isA ← T
06 · KA[·]← ⊥
07 · (stA, stB)←$ init
08 · Invoke A
09 · Stop with 0

Oracle SndA(ad)
10 Require stA 6= ⊥
11 · (stA, k, c)←$ sndA(stA, ad)
12 If isA:
13 · ACA[sA]← (ad, c)
14 EPA[sA]← eA
15 · KA[sA]← k
16 · sA ← sA + 1
17 · Return c

Oracle SndB(ad)
18 Require stB 6= ⊥
19 (stB, c)←$ sndB(stB, ad)
20 If isB:
21 ACB[sB]← (ad, c)
22 E>|

B ← E>|
B + 1

23 sB ← sB + 1
24 Return c

Oracle RcvB(ad, c)
25 · Require stB 6= ⊥
26 · If isB ∧ACA[rB] 6= (ad, c):
27 · isB ← F
28 If isB: E |<B ← EPA[rB]
29 · (stB, k)← rcvB(stB, ad, c)
30 · If stB = ⊥: Return ⊥
31 · Reward isB ∧ k 6= KA[rB]
32 · rB ← rB + 1
33 · Return

Oracle RcvA(ad, c)
34 Require stA 6= ⊥
35 If isA ∧ACB[rA] 6= (ad, c):
36 isA ← F
37 If isA: eA ← eA + 1
38 stA ← rcvA(stA, ad, c)
39 If stA = ⊥: Return ⊥
40 rA ← rA + 1
41 Return

Figure 3.8: Game FUNC for SRKE scheme R. The lines of code tagged with a ‘ · ’
also appear in the URKE FUNC game. Note that the variables eA,EPA,E |<

B ,E
>|
B

do not influence the game outcome.

and then, and to inform A about this. The goal is to let B recover
from state exposure.
Imagine, for example, a SRKE session where B has the follow-

ing view on the communication: first he sends four refresh cipher-
texts (to A) in a row; then he receives a key-establishing ciphertext
(from A). As we assume a fully concurrent setting and do not impose
timing constraints on the network delivery, the incoming ciphertext

62

3.5 Sesquidirectionally ratcheted key exchange (SRKE)

can have been crafted by A after her having received (from B) be-
tween zero and four ciphertexts. That is, even though B refreshed his
state a couple of times, to achieve correctness he has to remain pre-
pared for recovering keys from ciphertexts that were generated by A
before she recognized any of the refreshs. However, after processing
A’s ciphertext, if A created it after receiving some of B’s ciphertexts
(say, the first three), then the situation changes in that B is no longer
required to process ciphertexts that refer to refreshs older than the
one to which A’s current answer is responding to (in the example: the
first two).
These ideas turn out to be pivotal in the definition of SRKE security.

We formalize them by introducing the notion of an epoch. Epochs
start when the sndB algorithm is invoked (each invocation starts one
epoch), they are sequentially numbered, and the first epoch (with
number zero) is implicitly started by the init algorithm. Each rcvA
invocation makes A aware of one new epoch, and subsequent sndA
invocations can be seen as occurring in its context. Finally, on B’s
side multiple epochs may be active at the same time, reflecting that
B has to be ready to process ciphertexts that were generated by A
in the context of one of potentially many possible epochs. Intuitively,
epochs end (on B’s side) if a ciphertext is received (from A) that was
sent in the context of a later epoch.
We represent the span of epochs supported by B with the interval

variable EB (see Section 2.2): its boundaries E |<B and E>|
B reflect at

any time the earliest and the latest such epoch. Further, we use
variable eA to track the latest epoch started by B that party A is
aware of, and associative array EPA to register for each of A’s sending
operations the context, i.e., the epoch number that A is (implicitly)
referring to. In more detail, the invocation of init is accompanied
by setting E |<B ,E

>|
B , eA to zero (in lines 02,03), each sending operation

of B introduces one more supported epoch (line 22), each receiving
operation of A increases the latter’s awareness of epochs supported
by B (line 37), the context of each sending operation of A is recorded
in EPA (line 14), and each receiving operation of B potentially reduces
the number of supported epochs by dropping obsolete ones (line 28).

63

3 Optimally Secure Ratcheting in Two-Party Settings

Observe that tracking epochs is not meaningful after participants get
out-of-sync; we thus guard lines 37,28 with corresponding tests.

Security of SRKE. Our SRKE security model lifts the one for
URKE to the bidirectional (more precisely: sesquidirectional) set-
ting. The goal of the adversary is again to distinguish established
keys from random. For a SRKE scheme R, the corresponding key
indistinguishability games KINDb

R, for challenge bit b ∈ {0, 1}, are
specified in Figure 3.9. With any adversary A we associate its key dis-
tinguishing advantage Advkind

R (A) ..= |Pr[KIND1
R(A) ⇒ 1] −

Pr[KIND0
R(A) ⇒ 1]|. Intuitively, R offers key indistinguishability if

all practical adversaries have a negligible key distinguishing advan-
tage.
The new KIND games are the natural amalgamation of the (URKE)

KIND games of Figure 3.6 with the (SRKE) FUNC game of Figure 3.8
(with the exceptions discussed below). Concerning the trivial attack
conditions on URKE that we identified in Section 3.3, we note that
conditions (a) and (b) remain valid for SRKE without modification,
conditions (c) and (d) (that consider attacks on participants by tracing
their computations) need a slight adaptation to reflect that updating
epochs repairs the damage of state exposures, and condition (e) (that
considers impersonation of exposed A to B), besides needing a slight
adaptation, requires to be complemented by a new condition that
considers that exposing B allows for impersonating him to A.
When comparing the KIND games from figures 3.6 and 3.9, note

that a crucial difference is that the KA,KB arrays in the URKE model
are indexed with simple counters, while in the SRKE model they are
indexed with pairs where the one element is the same counter as in
the URKE case and the other element indicates the epoch for which
the corresponding key was established10. The new indexing mecha-
nism allows, when B is exposed, for marking as known only those
future keys of A and B that belong to the epochs managed by B

10The adversary always knows the epoch numbers associated with keys, so it can
pose meaningful Reveal and Challenge queries just as before.

64

3.5 Sesquidirectionally ratcheted key exchange (SRKE)

Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · sB ← 0; rA ← 0
02 · eA ← 0; EPA[·]← ⊥
03 · E |<B ← 0; E>|

B ← 0
04 · ACA[·]← ⊥; isB ← T
05 · ACB[·]← ⊥; isA ← T
06 KA[·]← ⊥; KB[·]← ⊥
07 XPA ← ∅; XPB ← ∅
08 KNA ← ∅; KNB ← ∅
09 CHA ← ∅; CHB ← ∅
10 · (stA, stB)←$ init
11 · b′ ←$ A
12 Require KNA ∩ CHA = ∅
13 Require KNB ∩ CHB = ∅
14 · Stop with b′

Oracle SndA(ad)
15 · Require stA 6= ⊥
16 · (stA, k, c)←$ sndA(stA, ad)
17 · If isA:
18 · ACA[sA]← (ad, c)
19 · EPA[sA]← eA
20 KA[eA, sA]← k
21 · sA ← sA + 1
22 · Return c

Oracle RcvA(ad, c)
23 · Require stA 6= ⊥
24 · If isA ∧ACB[rA] 6= (ad, c):
25 · isA ← F
26 If rA ∈ XPB:
27 KNA

∪← N× [sA, ...]
28 · If isA: eA ← eA + 1
29 · stA ← rcvA(stA, ad, c)
30 · If stA = ⊥: Return ⊥
31 · rA ← rA + 1
32 · Return

Oracle RcvB(ad, c)
33 · Require stB 6= ⊥
34 · If isB ∧ACA[rB] 6= (ad, c):
35 · isB ← F
36 If rB ∈ XPA:
37 KNB

∪← N× [rB, ...]
38 · If isB: E |<B ← EPA[rB]
39 · (stB, k)← rcvB(stB, ad, c)
40 · If stB = ⊥: Return ⊥
41 If isB: k ← �
42 KB[E |<B , rB]← k
43 · rB ← rB + 1
44 · Return

Oracle SndB(ad)
45 · Require stB 6= ⊥
46 · (stB, c)←$ sndB(stB, ad)
47 · If isB:
48 · ACB[sB]← (ad, c)
49 · E>|

B ← E>|
B + 1

50 · sB ← sB + 1
51 · Return c

Oracle ExposeA
52 If isA: XPA ∪← {sA}
53 Return stA
Oracle ExposeB
54 KNB

∪← [E |<B ..E>|
B]× [rB, ...]

55 If isB:
56 XPB ∪← {sB}
57 KNA

∪← [E |<B ..E>|
B]× [rB, ...]

58 Return stB
Oracle Reveal(u, i)

as in URKE (Fig. 3.6)

Oracle Challenge(u, i)
as in URKE (Fig. 3.6)

Figure 3.9: Games KINDb, b ∈ {0, 1}, for SRKE scheme R. Lines of code tagged
with a ‘ · ’ similarly appear in the SRKE FUNC game in Figure 3.8.

65

3 Optimally Secure Ratcheting in Two-Party Settings

at the time of exposure (lines 54,57). This already implements the
necessary adaptation of conditions (c) and (d) to the SRKE setting.
The announced adaptation of condition (e) is executing line 52 only
if isA = T; the change is due as the motivation given in Section 3.3
is valid only if A is in-sync (which is always the case in URKE, but
not in SRKE). Finally, complementing condition (e), we identify the
following new trivial attack condition:

(f) Exposing party B allows for impersonating it: Assume parties
A and B are in-sync. The adversary obtains a copy of B’s state
and invokes the sndB algorithm with it, obtaining a ciphertext
which it provides to party A (rendering the latter out-of-sync).
If then A generates a new key using the sndA algorithm, the
adversary can feed the resulting ciphertext into the rcvB algo-
rithm, recovering the key. Example: st∗B ← ExposeB(); (st∗B , c) ←$

sndB(st∗B , ε); RcvA(ε, c); c′ ← SndA(ε); (st∗B , k) ← rcvB(st∗B , ε, c′); k′ ←
Challenge(A, 0); b′ ← [k = k′]; output b′. Lines 26,27 (in conjunction
with lines 07,56) detect the described type of impersonation and
mark all future keys of A as known.

This completes the description of our SRKE security model. As in
URKE, it excludes the minimal set of attacks, indicating that it gives
strong security guarantees.

3.6 Constructing SRKE

We present a SRKE construction that generalizes our URKE scheme
to the sesquidirectional setting. The core intuition is as follows: Like
in the URKE scheme, A-to-B ciphertexts correspond with KEM ci-
phertexts where the corresponding public and secret keys are held by
A and B, respectively, and the two keys are evolved to new keys after
each use. In addition to this, with the goal of letting B heal from
state exposures, our SRKE construction gives him the option to sani-
tize his state by generating a fresh KEM key pair and communicating
the corresponding public key to A (using the B-to-A link specific to

66

3.6 Constructing SRKE

SRKE). The algorithms of our protocol are specified in Figure 3.10.
Although the sketched approach might sound simple and natural, the
algorithms, quite surprisingly, are involved and require strong cryp-
tographic building blocks (a key-updatable KEM and a one-time sig-
nature scheme, see Section 3.2 and Chapter 2). Their complexity is a
result of SRKE protocols having to simultaneously offer solutions to
multiple inherent challenges. We discuss these in the following.

Epoch management. Recall that we assume a concurrent setting for
SRKE and that, thus, if B refreshes his state via the sndB algorithm,
then he still has to keep copies of the secret keys maintained for prior
epochs (so that the rcvB algorithm can properly process incoming
ciphertexts created for them). Our protocol algorithms implement
this by including in B’s state the array SK [·] in which sndB stores all
keys it generates (line 26; obsolete keys of expired epochs are deleted
by rcvB in line 46). Beyond that, both A and B maintain an interval
variable E in their state: its boundaries E |< and E>| are used by B
to reflect the earliest and latest supported epoch, and by A to keep
track of epoch updates that occur in direct succession (i.e., that are
still waiting for their ‘activation’ by sndA). Note finally that the
sndA algorithm communicates to rcvB in every outgoing ciphertext
the epoch in which A is operating (line 11).

Secure state update. Assume A executes once the sndA algo-
rithm, then twice the rcvA algorithm, and then again once the sndA
algorithm. That is, following the above sketch of our protocol, as part
of her first sndA invocation she will encapsulate to a public key that
she subsequently updates (akin to how she would do in our URKE
solution, see lines 07,13 of Figure 3.7), then she will receive two fresh
public keys from B, and finally she will again encapsulate to a public
key that she subsequently updates. The question is: Which public
key shall she use in the last step? The one resulting from the update
during her first sndA invocation, the one obtained in her first rcvA
invocation, or the one obtained in her second rcvA invocation? We
found that only one configuration is safe against key distinguishing at-
tacks: Our SRKE protocol is such that she encapsulates to all three,

67

3 Optimally Secure Ratcheting in Two-Party Settings

combining the established session keys into one via concatenation.11

(We discuss why it is unsafe to encapsulate to only a subset of the
keys in Section 3.7.3.) The algorithms implement this by including
in A’s state the array PK [·] in which rcvA stores incoming public
keys (line 60) and which sndA consults when establishing outgoing ci-
phertexts (lines 12–14; the counterpart on B’s side is in lines 39–43).
Once the switch to the new epoch is completed, the obsolete public
keys are removed from A’s state (line 19). If A executes sndA many
times in succession, then all but the first invocation will, akin to the
URKE case, just encapsulate to the (one) evolved public key from the
preceding invocation.
We discuss a second issue related to state updates. Assume B ex-

ecutes three times the sndB algorithm and then once the rcvB algo-
rithm, the latter on input a well-formed but non-authentic ciphertext
(e.g., the adversary could have created the ciphertext, after exposing
A’s state, using the sndA algorithm). In the terms of our security
model the latter action brings B out-of-sync, which means that if he
is subsequently exposed then this should not affect the security of fur-
ther session keys established by A. On the other hand, according to
the description provided so far, exposing B’s state means obtaining a
copy of array SK [·], i.e., of the decapsulation keys of all epochs still
supported by B. We found that this easily leads to key distinguish-
ing attacks,12 so in order to protect the elements of SK [·] they are
evolved by the rcvB algorithm whenever an incoming ciphertext is
processed. We implement the latter via the dedicated update proce-
dure up provided by the key-updatable KEM. The corresponding lines
are 47–48 (note that t∗ is the current transcript fragment, see line 33).
Of course A has to synchronize on B’s key updates, which she does
in lines 58–59, where array L[·] is the state variable that keeps track
of the corresponding past A-to-B transcript fragments. (Outgoing ci-
phertexts are stored in L[·] in line 20, and obsolete ones are removed

11The concatenation of keys of an OW secure KEM can be seen as the implemen-
tation of a secure combiner in the spirit of [GHP18].

12We discuss this further in Section 3.7.2.

68

3.6 Constructing SRKE

from it in line 57.) Note that A, for staying synchronized with B,
also needs to keep track of the ciphertexts that he received (from her)
so far; for this reason, B indicates in every outgoing ciphertext the
number r of incoming ciphertexts he has been exposed to (lines 55,27).
Transcript management. Recall that one element of the partici-
pants’ state in our URKE scheme (in Figure 3.7) is the variable t that
accumulates transcript information (associated data, collision keys,
and ciphertexts) of prior communication so that it can be input to
key derivation. This is a common technique to ensure that the keys
established on the two sides start diverging in the moment an active
attack occurs. Also our SRKE construction follows this approach,
but accumulating transcripts is more involved if communication is
concurrent: If both A and B would add outgoing ciphertexts to their
transcript accumulator directly after creating them, then concurrent
sending would immediately desynchronize the two parties. This is-
sue is resolved in our construction as follows: In the B-to-A direction,
while A appends incoming ciphertexts (from B) to her transcript vari-
able in the moment she receives them (line 53), when creating the
ciphertexts, B will just record them in his state variable L[·] (line 29),
and postpone adding them to his transcript variable to the point when
he is able to deduce (from A’s ciphertexts) the position of when she
did (line 37; obsolete entries are removed in line 38). The A-to-B di-
rection is simpler13 and handled as in our URKE protocol: A updates
her transcript when sending a ciphertext (line 16), and B updates
his transcript when receiving it (lines 33,44). Note we tag transcript
fragments with labels . or / to indicate whether they emerged in the
A-to-B or B-to-A direction of communication (e.g., in lines 16,29).
Authentication. To reach security against active adversaries we
protect the SRKE ciphertexts against manipulation. Recall that in
our URKE scheme a MAC (plus a random collision key) was sufficient
for this. In SRKE, this is still sufficient for the A-to-B direction (lines
15,34), but for the B-to-A direction, to defend against attacks where
13Intuitively the disbalance comes from the fact that keys are only established by

A-to-B ciphertexts and that transcripts are only used for key derivation.

69

3 Optimally Secure Ratcheting in Two-Party Settings

the adversary first exposes A’s state and then uses the obtained MAC
key to impersonate B to her,14 we need to employ a one-time signature
scheme: Each ciphertext created by B includes a freshly generated
verification key that is used to authenticate the next B-to-A ciphertext
(lines 25,27,28,54,55; note how this rules out the described attack).

The only lines we did not comment on are 17,18,45,24—those that
also form the core of our URKE protocol (which are discussed ex-
tensively in Section 3.4). A more detailed discussion of some design
choices and more insights into insecure alternative constructions are
in Section 3.7.

Practicality of our construction We remark that the number of
updates per kuKEM key pair is bounded by the number of ciphertexts
sent by A during one round-trip time (RTT) on the network between
A and B (intuitively by the number of ciphertexts sent by A that
cross the wire with one epoch update ciphertext from B). Ciphertexts
that B did not know of when proposing an epoch (1/2 RTT) and
ciphertexts A sent until she received the epoch proposal (1/2 RTT)
are regarded for an update of a key pair. As a result, the hierarchy
depth of an HIBE can be bounded by this number of ciphertexts when
used for building a kuKEM for SRKE.
We further note that only the first and last send operation of A in an

epoch involve kuKEM ciphertexts and all other encapsulations during
A’s sending in an epoch can base on only a one-way secure standard
KEM. We emphasize this in our proof in Game 5.4 (see Section 3.11)
but neglect this detail for simplicity.

14Note this is not an issue in the A-to-B direction: Exposing B and impersonating
A to him leads to marking all future keys of B as known anyway, without any
option to recover. We expand on this in Section 3.7.1.

70

3.6 Constructing SRKE

Proc init
00 (sgk, vfk)←$ genS
01 · (sk, pk)←$ genK
02 · k.c ←$ K; k.m ←$ K; t← ε
03 E |< ← 0; E>| ← 0; s← 0; r ← 0
04 PK [·]← ⊥; PK [0]← pk
05 SK [·]← ⊥; SK [0]← sk
06 LA[·]← ⊥; LB[·]← ⊥; LA[0]← �
07 stA ← (PK , E, s, LA, vfk, k.c, k.m, t)
08 stB ← (SK , E, r, LB, sgk, k.c, k.m, t)
09 Return (stA, stB)

Proc sndA(stA, ad)
10 (PK , E, s, L, vfk, k.c, k.m, t)← stA
11 k∗ ← ε; ck ←$ K; C ← E>| ‖ ck
12 For e′ ← E |< to E>|:
13 · (k, c)←$ enc(PK [e′])
14 k∗

q← k; C q← c
15 · τ ← tag(k.m, ad ‖C)
16 · C q← τ ; t q← . ‖ ad ‖C
17 · k.o ‖ k.c ‖ k.m ‖ sk ← H(k.c, k∗, t)
18 · pk ← genK(sk)
19 PK [..., (E>| − 1)]← ⊥; PK [E>|]← pk
20 E |< ← E>|; s← s+ 1; L[s]← ad ‖C
21 stA ← (PK , E, s, L, vfk, k.c, k.m, t)
22 Return (S, k.o, C)

Proc sndB(stB, ad)
23 (SK , E, r, L, sgk, k.c, k.m, t)← stB
24 (sk∗, pk∗)←$ genK
25 (sgk∗, vfk∗)←$ genS
26 E>| ← E>| + 1; SK [E>|]← sk∗
27 ck ←$ K; C ← r ‖ pk∗ ‖ vfk∗ ‖ ck
28 σ ←$ sgn(sgk, ad ‖C)
29 C

q← σ; L[E>|]← / ‖ ad ‖C
30 stB ← (SK , E, r, L, sgk∗, k.c, k.m, t)
31 Return (stB, C)

Proc rcvB(stB, ad, C)
32 (SK , E, r, L, sgk, k.c, k.m, t)← stB
33 t∗ ← ad ‖C; C ‖ τ ← C
34 · Require vfyM(k.m, ad ‖C, τ)
35 k∗ ← ε; e ‖ ck ‖C ← C
36 Require E |< ≤ e ≤ E>|

37 t
q← L[E |< + 1] ‖ . . . ‖L[e]

38 L[..., e]← ⊥
39 For e′ ← E |< to e:
40 c ‖C ← C
41 · k ← dec(SK [e′], c)
42 · Require k 6= ⊥
43 k∗

q← k
44 t

q← . ‖ t∗
45 · k.o ‖ k.c ‖ k.m ‖ sk ← H(k.c, k∗, t)
46 SK [..., (e− 1)]← ⊥; SK [e]← sk
47 For e′ ← e+ 1 to E>|:
48 SK [e′]← up(SK [e′], t∗)
49 E |< ← e; r ← r + 1
50 stB ← (SK , E, r, L, sgk, k.c, k.m, t)
51 Return (stB, k.o)

Proc rcvA(stA, ad, C)
52 (PK , E, s, L, vfk, k.c, k.m, t)← stA
53 t

q← / ‖ ad ‖C; C ‖σ ← C
54 Require vfyS(vfk, ad ‖C, σ)
55 r ‖ pk∗ ‖ vfk ‖ ck ← C
56 Require L[r] 6= ⊥
57 L[..., (r − 1)]← ⊥; L[r]← �
58 For s′ ← r + 1 to s:
59 pk∗ ← up(pk∗, L[s′])
60 E>| ← E>| + 1; PK [E>|]← pk∗
61 stA ← (PK , E, s, L, vfk, k.c, k.m, t)
62 Return stA

Figure 3.10: SRKE construction from key-updatable KEM K = (genK, enc, dec),
MAC M = (tag, vfyM), one-time signature S = (genS, sgn, vfyS), and random ora-
cle H. For simplicity, we denote MAC key space and the spaces of chaining and
collision keys with symbol K. Notation: Lines 06,57: Storing placeholder symbol �
for irrelevant array entries. Line 37: If E|< = e then no value shall be concatenated to t.
Line 40: The last loop iteration clears C. Lines 16,53,44,29: Labels . and / distinguish
transcript fragments in the A-to-B from those in B-to-A direction. Code lines tagged with
a ‘ · ’ depict the URKE construction’s core.

71

3 Optimally Secure Ratcheting in Two-Party Settings

Theorem 2 The SRKE protocol R from Figure 3.10 offers key in-
distinguishability. More precisely, if function H is modeled as a ran-
dom oracle, for every adversary A against SRKE scheme R in games
KINDb

R from Figure 3.9 there exists an adversary BK against kuKEM K
in game KUOW from Figure 3.3, an adversary BS against signa-
ture scheme S in game SUF from Figure 2.3, and an adversary BM
against MAC M in game SUF from Figure 2.2 such that Advkind

R (A) ≤
3 · Advkuow

K (BK) + Advsuf
S (BS) + Advsuf

M (BM) + qH+2
|K| , where K is the

(collision-)key space, the running time of BK is about that of A plus
qH key checking and solve operations, the running time of BS and BM
is about that of A, and qH is the number of A’s random oracle queries.

The proof of Theorem 2 is in Section 3.11. The approach is the same
as in our URKE proof but with small yet important differences: 1) the
proof reduces signature forgeries to the SUF security of the signature
scheme to show that communication from B to A is authentic, 2) the
security of session keys established by A is reduced to the KUOW
security of the kuKEM. The reduction to the KUOW game is split
into three cases: a) session keys established by A in sync, b) the first
session key established by A out of sync, and c) all remaining session
keys established by A out of sync. This distinction is made as in each
of these cases a different encapsulated key—as part of the random
oracle input—is shown to be unknown to the adversary. Finally the
SRKE proof—as in the URKE proof—makes use of the MAC’s SUF
security to show that B will never establish challengeable keys out of
sync.

3.7 Rationales for SRKE Design
We sketched the reasons for employing sophisticated primitives as
building blocks for our design of SRKE in the previous section al-
ready. In this section we develop more detailed arguments for our
design choices by providing attacks on constructions different from
our design. At first it is described why SRKE requires signatures for
protecting the communication from B to A—in contrast to employing

72

3.7 Rationales for SRKE Design

a MAC from A to B. Then we will evaluate the requirements for the
KEM key pair update in the setting of concurrent sending of A and
B.

3.7.1 Signatures from A to B

While a MAC suffices to protect authenticity for ciphertexts sent from
A to B it does not suffice to protect the authenticity in the counter
direction. The reason for this lies within the conditions with which
future session keys of A and B are marked known in the KIND game
of SRKE. An impersonation of A towards B has the same effect on
the traceability of B’s future session keys as if the adversary exposes
B’s state and then brings B out of sync. Either way all future session
keys of B are marked known (see Figure 3.9 lines 37 and 54,38). In
the first scenario, the adversary can compute the same session keys
as B because the adversary initiates the key establishment imperson-
ating A. In the second scenario, the adversary can comprehend B’s
computations during the receipt of ciphertexts because it possesses
the same state information as B.

For computations of A, however, only the former scenario is ap-
plicable: if the adversary impersonated B towards A, then again the
adversary is in the position to trace the establishment of session keys
of A because it can simulate the respective counterpart’s receiver com-
putations. In contrast to this, when exposing A and then bringing her
out of sync, according to the KIND game, the adversary must not
obtain information on her future session keys (see Figure 3.9 lines 52
et seqq.). As a result, the exposure of A’s state should not enable the
adversary to impersonate B towards A. Consequently the authen-
tication of the communication from B to A cannot be reached by a
primitive with a symmetric secret but rather the protocol needs to en-
sure that B needs to be exposed in order to impersonate him towards
A.
The non-trivial attack that is defended by employing signatures

consists of the following adversary behavior: stA ← ExposeA; Extract au-
thentication secrets from stA to derive st′B ; (C′, st′′B)←$ sndB(st′B , ε); RcvA(C′, ε);

73

3 Optimally Secure Ratcheting in Two-Party Settings

CA1 ← SndA(ε); k ← Challenge(A, 1). Thereby the adversary must not be
able to decide whether it obtained the real or random key for cipher-
text CA1 from the challenge oracle. Please note that this is related to
key-compromise impersonation resilience (while in this case ephemeral
signing keys are compromised).

3.7.2 Key-updatable KEM for Concurrent Sending

There exist two crucial properties that are required from the key pair
update of the KEM in the setting in which A and B send concurrently.
Firstly, the key update needs to be forward secure which means that
an updated secret key does not reveal information on encapsulations
to previous secret keys or to differently updated secret keys. Secondly,
the update of the public key must not reveal information on keys that
will be encapsulated to its respective secret key. We will explain the
necessity of these requirements one after another.
The key pair update for concurrently sending only affects epochs

that have been proposed by B, but that have not been processed
by A yet. These updates have to consider ciphertexts that A sent
during the transmission of the public key for a new epoch from B
to A. Subsequently we describe an example scenario in which these
updates are necessary for defending a non-trivial attack: In the worst
case, all secrets among A and B have been exposed to the adver-
sary before B proposes a new epoch (stA ← ExposeA; stB ← ExposeB).
Thereby only a public key sent by B after the exposure will provide
security for future session key establishments initiated by A. Now
consider a scenario in which B proposes this new public key to A
(CB1 ← SndB(ε); RcvA(CB1, ε)) and A is simultaneously impersonated
towards B ((st′A, k′, C′) ←$ sndA(stA, ε); RcvB(C′, ε)). Since B proposed
the new public key within CB1 in sync and A received it in sync
respectively—and B was not exposed under the new state—, future es-
tablished session keys of A are considered to be indistinguishable from
random key space elements again (CA1 ← SndA(ε); k ← Challenge(A, 1)).
Due to the impersonation of A towards B, however, B became out
of sync. Becoming out of sync cannot be detected by B because

74

3.7 Rationales for SRKE Design

the adversary can send a valid ciphertext C ′ under the exposed state
of A stA. Exposing B out of sync afterwards (st′B ← ExposeB), by
definition, must not have an impact on the security of session keys
established by A afterwards (see Figure 3.9 line 55). As a result, af-
ter the adversary performed these steps, the challenged session key
is required to remain indistinguishable from a random element from
the key space. Consequently B must perform an update of the secret
key for the newest epoch when receiving C ′ such that the public key
transmitted in CB1 still provides its security guarantees when using it
in A’s final send operation (remember that all previous secrets among
A and B were exposed before).
When accepting that an update of B’s future epoch’s secret keys

is required at the receipt of ciphertexts, another condition arises for
the respective update of A’s public keys. For maintaining correctness,
A of course needs to compute updates of a received new public key
with respect to all previously sent ciphertexts that B was not aware
of when sending the public key. Suppose again, in a fresh session,
that A’s and B’s secrets have all been exposed towards the adversary
(stA ← ExposeA; stB ← ExposeB). Now A sends a new key establishing
ciphertext and B proposes a new epoch public key (CA1 ← SndA(ε);
CB1 ← SndB(ε)). According to the previous paragraph, A needs to
update the received public key in CB1 with respect to CA1 after re-
ceiving CB1 (RcvA(CB1, ε)). Since CB1 introduces a new epoch, the
next send operation of A needs to establish a secure session key again
(CA2 ← SndA(ε); k ← Challenge(A, 2)). Now observe that in order to
update the received public key, A can only use information from her
state stA—which is known by the adversary—, public information like
the transmitted ciphertexts, and randomness. Essentially, the update
can hence only depend on information that the adversary knows plus
random coins which cannot be transmitted confidentially to B before
performing the update (because there exist no secrets except for the
key pair that first needs to be updated). Since B probably received
CA1 before A received CB1, A cannot influence the update performed
by B on his secret key. This means that the updates of A and B
need to be conducted independently. As such, the adversary is able

75

3 Optimally Secure Ratcheting in Two-Party Settings

to perform the update on the same information that A has (only ran-
domness of A and of the adversary can differ). Nevertheless, both
updates—the one performed by the adversary and the one performed
by A—need to be compatible to the secret key that B derives from his
update. As a result, the update of the public key must not reveal the
respective secret key (or any other information that can be used to
obtain information on keys encapsulated to this updated public key).
Otherwise, the adversary would obtain this information as well and
thereby the security of the key established with CA2 would not be
preserved.
Both requirements are reflected in the security of kuKEM (see Fig-

ure 3.3).
While these observations are only heuristic arguments for relying on

kuKEM, our analysis in Chapter 4 provably reveals conditions under
which kuKEM and RKE are equivalent such that the former is both
necessary and sufficient to realize the latter.

3.7.3 Encapsulation to all Public Keys

In order to explain why A always encapsulates to all public keys in her
state, we describe a scenario in which A only maintains one public key
in her state to which she can securely encapsulate keys (while the state
contains multiple useless public keys). This scenario is crucial because
A does not know, which of her public keys provides security, and
the SRKE protocol is required to output secure session keys therein.
Consequently only encapsulating to all public keys in A’s state solves
the underlying issue. The reasons for encapsulating to all public keys
in A’s state is closely related to the reasons for employing a kuKEM
in SRKE (see the previous Subsection).
Assume the adversary exposes the states of both parties (stA ←

ExposeA; stB ← ExposeB). Consequently none of A’s public keys pro-
vides any security guarantees for the encapsulation towards the adver-
sary anymore. If the adversary lets B send a ciphertext and thereby
propose a new public key to A, A’s future session keys are required
to be secure again (CB1 ← SndB(ε); RcvA(CB1, ε)). Impersonating A to-

76

3.7 Rationales for SRKE Design

wards B and then exposing B to obtain his state has—according to
the KIND game—no influence on the traceability of A’s future session
keys ((st′A, k′, C′) ←$ sndA(stA, ε); RcvB(C′, ε); st′B ← ExposeB). However,
our construction allows the adversary to impersonate B towards A
afterwards: the impersonation of A towards B only invalidates the
kuKEM secret key in B’s state via the key update in B’s receive algo-
rithm. The signing key in B’s state is still valid for the communication
to A since it was not modified at the receipt of the impersonating ci-
phertext. As such, the adversary may use the signing key and then
implant further public keys in A’s state by sending these public keys
to A ((st′′B , C′′) ←$ sndB(st′B , ε); RcvA(C′′, ε)). These public keys do not
provide security with respect to A’s session keys since the adversary
can freely choose them. As a result, only the public key that B sent
in sync before A was impersonated towards B belongs to a secret key
that the adversary does not know (public key in CB1). Since A has no
indication which public key’s secret key is not known by the adversary
(note that A and B were exposed at the beginning of the presented
scenario and the adversary planted own public keys in A’s state at the
end of the scenario by sending valid ciphertexts), A needs to encap-
sulate to all public keys in order to obtain at least one encapsulated
key as secret input to the random oracle such that the session key also
remains secure (CA1 ← SndA(ε); k ← Challenge(A, 1)).

Observe that the scenario, described above, lacks an argument why
also the first public key in A’s state needs to be used for the encapsu-
lation if A received further public keys from B afterwards. The reason
for also using the first public key, that is always derived from the pre-
vious random oracle output, lies within A’s sending after becoming
out of sync. A became out of sync by receiving C ′′ (see above). When
sending CA1, A derived a new public key for her state. The secret key
to this public key was part of the same random oracle output as the
session key that is challenged afterwards (and established with CA1).
As argued before, this session key is secure (for all details we refer
the reader to the proof in Section 3.11). Consequently the public key
in A’s state after sending CA1 provides security against the adversary
regrading encapsulations. However, the adversary can still plant new

77

3 Optimally Secure Ratcheting in Two-Party Settings

public keys to A’s state ((st′′′B , C
′′′)←$ sndB(st′′B , ε); RcvA(C′′′, ε)). As such,

only the first public key in A’s state provides security after A became
out of sync (and sent once afterwards). All remaining public keys may
belong to secret keys chosen by the adversary. Since A will not notice
when she became out of sync, she also needs to include the first public
key in her state for encapsulating within her send algorithm in order
to compute secure session keys (CA2 ← SndA(ε); k ← Challenge(A, 2)).

As a result, A always needs to encapsulate to all public keys in
her state such that at least one encapsulated key is a secret input to
the random oracle (in case her future session keys were not marked
traceable by the KIND game).

3.8 Bidirectionally ratcheted key exchange
(BRKE)

The URKE and SRKE primitives are unbalanced in that they allow
only one of the two participants to actively establish new keys. As
the ratcheting notion first appeared in the context of (bidirectional)
instant messaging [Lan16, BGB04, PM16] it is natural to ask for a
fully balanced primitive where both participants have the capabil-
ity of establishing fresh keys independently of each other. In this
section we correspondingly study bidirectional ratcheted key exchange
(BRKE) by first defining its syntax, functionality, and security, and
then proposing two constructions. We note that the BRKE notions
are natural extensions of those of URKE and SRKE, effectively dupli-
cating specific parts of the security model and constructions so that
they are available in both directions of communication. The main
challenge is to properly interweave the communication in the two di-
rections.
Formally, a BRKE scheme for a finite key spaceK and an associated-

data space AD is a triple R = (init, snd, rcv) of algorithms together
with a state space S and a ciphertext space C. The randomized ini-
tialization algorithm init returns a pair of states (stA, stB) ∈ S × S.
The randomized sending algorithm snd takes a state S ∈ S and

78

3.8 Bidirectionally ratcheted key exchange (BRKE)

an associated-data string ad ∈ AD, and produces an updated state
S′ ∈ S, a key k ∈ K, and a ciphertext c ∈ C. Finally, the deterministic
receiving algorithm rcv takes a state S ∈ S, an associated-data string
ad ∈ AD, and a ciphertext c ∈ C, and either outputs an updated
state S′ ∈ S and a key k ∈ K or outputs the special symbol ⊥ to in-
dicate rejection. A shortcut notation for these syntactical definitions
(conceptually shown in Figure 3.1) is

init →$ S × S
S ×AD → snd →$ S × K × C

S ×AD × C → rcv → (S × K) ∪ {(⊥,⊥)} .

Correctness of BRKE. We formalize the correctness of BRKE via
game FUNC in Figure 3.11. Concretely, we say scheme R is correct
if Pr[FUNCR(A) ⇒ 1] = 0 for all adversaries A. The game is best
understood by comparing it with the functionality game of SRKE (in
Figure 3.8): As in BRKE the roles of the participants are symmetric,
the Snd and Rcv oracles in Figure 3.11 are effectively the amalgama-
tion of the SndA and SndB oracles, respectively, the RcvA and RcvB
oracles, from Figure 3.8. Observe that, as in BRKE the snd invo-
cations of both participants create fresh keys and start new epochs,
in the FUNC game each participant has its individual copy of the
game variables K,EP, e,E |<,E>|; this is in contrast with the SRKE
case where variables K,EP, e were specific to one party, and variables
E |<,E>| were specific to the other.

Security of BRKE. Our BRKE security model is derived by lift-
ing the indistinguishability notion from SRKE from Figure 3.9 to the
fully bidirectional case, again amalgamating SndA and SndB oracles
and RcvA and RcvB oracles to single Snd and Rcv oracles, respec-
tively, and using the notation of the BRKE functionality game from
Figure 3.11. The result are the key indistinguishability games KINDb

R,
for challenge bit b ∈ {0, 1}, specified in Figure 3.12. The only noteable
novelty, required as in BRKE keys can be established by both partic-
ipants, is that the game manages two copies of the K array per user:

79

3 Optimally Secure Ratcheting in Two-Party Settings

Game FUNCR(A)
00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E |<u ← 0; E>|

u ← 0
04 ACu[·]← ⊥; isu ← T
05 Ku[·]← ⊥
06 (stA, stB)←$ init
07 Invoke A
08 Stop with 0

Oracle Snd(u, ad)
09 Require stu 6= ⊥
10 (stu, k, c)←$ snd(stu, ad)
11 If isu:
12 ACu[su]← (ad, c)
13 EPu[su]← eu
14 E>|

u ← E>|
u + 1

15 Ku[su]← k
16 su ← su + 1
17 Return c

Oracle Rcv(u, ad, c)
18 Require stu 6= ⊥
19 If isu ∧ACū[ru] 6= (ad, c):
20 isu ← F
21 If isu:
22 E |<u ← EPū[ru]
23 eu ← eu + 1
24 (stu, k)← rcv(stu, ad, c)
25 If stu = ⊥: Return ⊥
26 Reward isu ∧ k 6= Kū[ru]
27 ru ← ru + 1
28 Return

Figure 3.11: Game FUNC for BRKE scheme R. For a user u ∈ {A,B} we write
ū for its peer; that is, we always have {u, ū} = {A,B}.

We represent keys that user u establishes with the role of a sender
as Ku[S, . . .], and we represent keys that u recovers as a receiver as
Ku[R, . . .]. For a BRKE scheme R, with any adversary A we associate
its key distinguishing advantage Advkind

R (A) ..= |Pr[KIND1
R(A) ⇒

1] − Pr[KIND0
R(A) ⇒ 1]|. Intuitively, R offers key indistinguisha-

bility if all practical adversaries have a negligible key distinguishing
advantage.

3.9 Constructing BRKE

We propose two constructions of the BRKE primitive. Their com-
mon denominator is that they internally use two instances of a SRKE
protocol—one in the Alice-to-Bob direction and one in the Bob-to-
Alice direction. The challenge is to properly interweave their oper-

80

3.9 Constructing BRKE

Game KINDb
R(A)

00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E |<u ← 0; E>|

u ← 0
04 ACu[·]← ⊥; isu ← T
05 Ku[·]← ⊥; XPu ← ∅
06 KNu ← ∅; CHu ← ∅
07 (stA, stB)←$ init
08 b′ ←$ A
09 For u ∈ {A,B}:
10 Require KNu ∩ CHu = ∅
11 Stop with b′

Oracle Snd(u, ad)
12 Require stu 6= ⊥
13 (stu, k, c)←$ snd(stu, ad)
14 If isu:
15 ACu[su]← (ad, c)
16 EPu[su]← eu
17 E>|

u ← E>|
u + 1

18 Ku[S, eu, su]← k
19 su ← su + 1
20 Return c

Oracle Reveal(u, i)
as in URKE/SRKE (Fig. 3.6)

Oracle Rcv(u, ad, c)
21 Require stu 6= ⊥
22 If isu ∧ACū[ru] 6= (ad, c):
23 isu ← F
24 If ru ∈ XPū:
25 KNu

∪← {S} × N× [su, ...]
26 KNu

∪← {R} × N× [ru, ...]
27 If isu:
28 E |<u ← EPū[ru]
29 eu ← eu + 1
30 (stu, k)← rcv(stu, ad, c)
31 If stu = ⊥: Return ⊥
32 If isu: k ← �
33 Ku[R,E |<u , ru]← k
34 ru ← ru + 1
35 Return

Oracle Expose(u)
36 KNu

∪← {R} × [E |<u ..E>|
u]× [ru, ...]

37 If isu:
38 XPu ∪← {su}
39 KNū

∪← {S} × [E |<u ..E>|
u]× [ru, ...]

40 Return stu
Oracle Challenge(u, i)

as in URKE/SRKE (Fig. 3.6)

Figure 3.12: Games KINDb, b ∈ {0, 1}, for BRKE scheme R. Symbols S and R are
labels that distinguish whether keys were established in a sending or a receiving
operation.

ations such that, overall, BRKE security is reached. (For instance,
attacking one of the instances needs to automatically escalate to an
attack on the second as otherwise attacks on KIND security become
feasible). Our first solution achieves this via strongly unforgeable
one-time signatures. Our second solution is slightly more efficient but
ad-hoc; it is derived from the specific SRKE protocol from Figure 3.10
and carefully interleaves the use of its inner building blocks.

Generic construction with one-time signatures. Let SR de-

81

3 Optimally Secure Ratcheting in Two-Party Settings

note a SRKE protocol, and assume a strongly unforgeable one-time
signature scheme as an auxiliary building block. The snd and rcv
algorithms of our first BRKE construction are in Figure 3.13. (The
init algorithm is not in the figure; it just performs two invocations of
initSR, and the initial states of users consist of one sending and one
receiving state.) Concretely, our snd algorithm performs internally
two snd invocations of the underlying SRKE scheme (in lines 02,03),
which results in a key k.o and two ciphertexts c1, c2. These ciphertexts
are protected by a one-time signature before being sent to the peer: a
fresh signature key pair is generated per snd invocation (in line 01),
and the pair c1, c2 signed with it (in line 04). Note that the signature
verification key is included in the associated-data field of both internal
snd invocations (see line 01). To allow for signature verification on the
side of the peer, the verification key is sent along with the ciphertexts.
The peer processes the ciphertext in the obvious way.
We describe the rationale behind our construction. The goal is

to bind the two ciphertext components c1, c2 together such that any
manipulation of the pair will be detected by both underlying SRKE
instances. One could try to implement this directly via the associated-
data fields on the SRKE, that is, by including c1 in ad when produc-
ing c2 or by including c2 in ad when producing c1. It turns out that
both these options are too weak and allow for attacks on key indistin-
guishability of the composed BRKE scheme. By using the one-time
signature scheme we side-step this one-before-the-other dependency.
The security argument for our construction in Figure 3.13 is as fol-
lows: Note first that each verification key recovered in line 09 is either
authentic or not. If it is, then also c1, c2, σ are authentic (otherwise
the adversary would have broken the strong unforgeability of the one-
time signature scheme). If it is not, then this will be reflected in the
changed associated-data field ad line 09, i.e., both SRKE instances
will be notified of this.

Theorem 3 The BRKE protocol BR from Figure 3.13 offers key in-
distinguishability. More precisely, for every adversary A against BRKE
scheme BR in games KINDb

BR from Figure 3.12 there exists an adver-

82

3.9 Constructing BRKE

Proc snd(st, ad)
00 (st1, st2)← st
01 (sgk, vfk)←$ genS; ad q← vfk
02 (st1, k.o, c1)←$ sndA(st1, ad)
03 (st2, c2)←$ sndB(st2, ad)
04 σ ←$ sgn(sgk, c1 ‖ c2)
05 c← vfk ‖ c1 ‖ c2 ‖σ
06 st ← (st1, st2)
07 Return (st, k.o, c)

Proc rcv(st, ad, c)
08 (st1, st2)← st
09 vfk ‖ c1 ‖ c2 ‖σ ← c; ad q← vfk
10 Require vfyS(vfk, c1 ‖ c2, σ)
11 st1 ← rcvA(st1, ad, c2)
12 Require st1 6= ⊥
13 (st2, k.o)← rcvB(st2, ad, c1)
14 Require st2 6= ⊥
15 st ← (st1, st2)
16 Return (st, k.o)

Figure 3.13: Generic construction of BRKE scheme BR from a SRKE scheme
SR = (initSR, sndA, sndB , rcvA, rcvB) and a one-time signature scheme S =
(genS, sgn, vfyS).

sary BSR against SRKE scheme SR in game KINDSR from Figure 3.9
and an adversary BS against signature scheme S in game SUF from
Figure 2.3 such that Advkind

BR (A) ≤ 2Advkind
SR (BSR)+Advsuf

S (BS), where
the running times of BSR and BS are about that of A.

We prove Theorem 3 in Section 3.12.
Ad-hoc construction. Our ad-hoc construction in Figure 3.14
directly adopts the SRKE construction and combines both sending
algorithms and both receiving algorithms. To derive the necessary
binding that was described in the previous paragraph, the sending
algorithms intertwine by signing both ciphertext parts together and
then feeding the whole ciphertext—including the signature—into the
random oracle. As such, a manipulation of parts of the ciphertext
directly affects both SRKE states.
We split the blocks taken from a different algorithm of the SRKE

construction respectively by leaving blank lines in Figure 3.14. All
lines not marked with a ‘·’ at the left margin are directly copied from
the SRKE construction. In line 20 instead of setting the ciphertext to
the newest epoch number, the ciphertext is appended by this number.
As a result, both ciphertexts of the sending algorithms of SRKE are
concatenated. In line 25 we index the encoding by the user identifier of
the sending party. While in SRKE, each algorithm can only be used by

83

3 Optimally Secure Ratcheting in Two-Party Settings

one of the two communicating parties, in BRKE a unique encoding for
each party becomes necessary to separate the parts of the transcript
with respect to their origin. Similarly the encoding in the receive
algorithm is equipped with user indexed encoding (see lines 37,56). In
order to input the whole just received ciphertext and associated-data
string to the random oracle, in line 37 a copy of it is stored in t∗ (in
line 56 this string is appended to the current transcript). Finally in
line 39 the ciphertexts of both SRKE instantiations are split again to
process them at receipt.
Please note that the whole ciphertext is thereby signed at sending

and fed into the random oracle. As such, the ciphertexts of SRKE are
authenticated in this ad-hoc BRKE construction without employing
an additional one-time signature.

84

3.9 Constructing BRKE

Proc init
00 For u ∈ {A,B}:
01 (sgku, vfku)←$ genS
02 (sku, pku)←$ genK
03 k.cu ←$ K; t← ε
04 E |< ← 0; E>| ← 0
05 s← 0; r ← 0
06 PKu[·]← ⊥; PKu[0]← pk
07 SKu[·]← ⊥; SKu[0]← sk
08 LS [·]← ⊥; LR[·]← ⊥; LS [0]← �
09 Su ← (PK ū, E, s, LS , vfk ū, k.cū, t)
10 Ru ← (SKu, E, r, LR, sgku, k.cu, t)
11 STu ← (Ru, Su)
12 Return (STA,STB)

Proc snd(ST , ad)
13 (R,S)← ST
14 (SK , ER, r, LR, sgk, k.cR, tR)← R
15 (sk∗, pk∗)←$ genK
16 (sgk∗, vfk∗)←$ genS
17 E>|

R ← E>|
R + 1; SK [E>|

R]← sk∗
18 ck ←$ K; C ← r ‖ pk∗ ‖ vfk∗ ‖ ck

19 (PK , ES , s, LS , vfk, k.cS , tS)← S
20 · k∗ ← ε; C q← E>|

S
21 For e′ ← E |<S to E>|

S :
22 (k, c)←$ enc(PK [e′])
23 k∗

q← k; C q← c

24 σ ←$ sgn(sgk, ad ‖C)
25 · C q← σ; LR[E>|

R]← .u ‖ ad ‖C
26 R← (SK , ER, r, LR, sgk∗, k.cR, tR)

27 tS
q← .u ‖ ad ‖C

28 k.o ‖ k.cS ‖ sk ← H(k.cS , k∗, tS)
29 pk ← genK(sk)
30 PK [..., (E>|

S − 1)]← ⊥; PK [E>|
S]← pk

31 E |<S ← E>|
S ; s← s+ 1; LS [s]← ad ‖C

32 S ← (PK , ES , s, LS , vfk, k.cS , tS)
33 ST ← (R,S)
34 Return (ST , k.o, C)

Proc rcv(ST , ad, C)
35 (R,S)← ST
36 (PK , ES , s, LS , vfk, k.cS , tS)← S
37 · t∗ ← ad ‖C; tS q← .ū ‖ t∗; C ‖σ ← C
38 Require vfyS(vfk, ad ‖C, σ)
39 · r ‖ pk∗ ‖ vfk ‖ ck ‖C ← C
40 Require LS [r] 6= ⊥
41 LS [..., (r − 1)]← ⊥; LS [r]← �
42 For s′ ← r + 1 to s:
43 pk∗ ← up(pk∗, LS [s′])
44 E>|

S ← E>|
S + 1; PK [E>|

S]← pk∗
45 S ← (PK , ES , s, LS , vfk, k.cS , tS)

46 (SK , ER, r, LR, sgk, k.cR, tR)← R
47 k∗ ← ε; e ‖C ← C
48 Require E |<R ≤ e ≤ E>|

R
49 tR

q← LR[E |<R + 1] ‖ . . . ‖LR[e]
50 LR[..., e]← ⊥
51 For e′ ← E |<R to e:
52 c ‖C ← C
53 k ← dec(SK [e′], c)
54 Require k 6= ⊥
55 k∗

q← k
56 · tR

q← .ū ‖ t∗
57 k.o ‖ k.cR ‖ sk ← H(k.cR, k∗, tR)
58 SK [..., (e− 1)]← ⊥; SK [e]← sk
59 For e′ ← e+ 1 to E>|

R :
60 SK [e′]← up(SK [e′], t∗)
61 E |<R ← e; r ← r + 1
62 R← (SK , ER, r, LR, sgk, k.cR, tR)
63 ST ← (R,S)
64 Return (ST , k.o)

Figure 3.14: Construction of BRKE from our SRKE construction in Figure 3.10
by intertwining the respective algorithms.

85

3 Optimally Secure Ratcheting in Two-Party Settings

3.10 Proof of URKE
Overview

In order to prove the construction’s security, we proceed in a sequence
of games that pursues two targets: on the one hand the simulation
is to be conducted without the usage of secret keys that belong to
A’s public keys, and on the other hand the adversary’s random oracle
requests and its forged MAC tags are used to solve the underlying
hardness assumptions. While games G2, G3 and G4 answer the former
purpose, G3 and G5 (and in SRKE G1) entail abortions of the game
for events that are assumed to occur with negligible probability.
To unify the proof description for URKE and SRKE, we harmo-

nize the numbering of the games. As we consider signature forgeries
in SRKE in game G1 and the URKE construction makes no use of
signatures, G1 in URKE equals the original game and is thereby a
placeholder.
The description of the game hops for the SRKE proof consequently

mainly focuses on the differences and peculiarities.

Notation Figure 3.15 and 3.16 show the proof, split into the KIND
game, containing the URKE construction, and the random oracle.
Modifications by the game hops are included into the figures and de-
noted as follows:
The symbol at the right margin of a line annotates for which games

a manipulation due to the game hop is valid. A line marked with a
symbol G≥3 is valid for game G3 and all subsequent games. If a line is
not valid for the final game, this line is struck through. Thereby either
only the game is denoted in which a line becomes invalid by G<y or
an interval of games for which a line is valid is marked by Gx−y where
Gx is the game in which a line is introduced and Gy is the first game
in which the line is disregarded.
Procedures, newly introduced by a game hop, are denoted by the

symbol described above only in the first line of the procedure to reduce
redundancy (e.g., see the procedures in Figure 3.16).

86

3.10 Proof of URKE

Simulation SbR(A)
00 R[·]← ⊥ G≥0
01 sA ← 0; rB ← 0
02 ACA[·]← ⊥; isB ← T
03 oosB ←∞; acosB ← ⊥ G≥3
04 KA[·]← ⊥; KB[·]← ⊥
05 XPA ← ∅
06 KNA ← ∅; KNB ← ∅
07 CHA ← ∅; CHB ← ∅
08 SK?[·]← ⊥; KT?[·]← ⊥ G≥2
09 CK [·]← ⊥; XSK ← ∅ G≥2
10 sk ←$ SK
11 pk ← genK(sk)
12 (k.c, k.m)←$ K2; t← ε
13 stA ← (pk, k.c, k.m, t)
14 stB ← (sk, k.c, k.m, t) G<2
15 KT?[sA, S]← (k.c, k.m, t) G≥2
16 SK?[sA, S]← sk G≥2
17 b′ ←$ A
18 Require KNA ∩ CHA = ∅
19 Require KNB ∩ CHB = ∅
20 Stop with b′

Oracle SndA(ad)
21 i← (sA, S) G≥2
22 (pk, k.c, k.m, t)← stA
23 (k, c)←$ enc(pk)
24 CK [c, i]← k G≥2
25 ck ←$ K
26 τ ← tag(k.m, ad ‖ c ‖ ck)
27 C ← c ‖ ck ‖ τ
28 t

q← ad ‖C
29 k.o ‖ k.c∗ ‖ k.m ‖ sk ← H(k.c, k, t) G<3
30 k.o ‖ k.c∗ ‖ ← G(k.c, t, i, T) G≥3
31 k.m ←$ K; sk ←$ SK G≥3
32 SetO(k.c, t, i, k.m, sk) G3−4
33 pk ← genK(sk)
34 stA ← (pk, k.c∗, k.m, t)
35 ACA[sA]← (ad, C)
36 If sA = oosB ∧ (ad, C) = acosB: G≥3
37 Abort G≥3
38 KA[sA]← k.o
39 sA ← sA + 1
40 i← (sA, S) G≥2
41 KT?[i]← (k.c∗, k.m, t) G≥2
42 SK?[i]← sk G≥2
43 Return C

Oracle ExposeA
As in KIND

Oracle Reveal(u, j)
As in KIND

Oracle RcvB(ad, C)
44 Require stB 6= ⊥
45 If isB ∧ACA[rB] 6= (ad, C):
46 SK?[rB, R]← SK?[rB, S] G≥2
47 KT?[rB, R]← KT?[rB, S] G≥2
48 oosB ← rB; acosB ← (ad, C) G≥3
49 isB ← F
50 If rB ∈ XPA:
51 KNB

∪← [rB, ...]
52 Else if (rB, S) /∈ XSK : G≥5
53 forge ← T G≥5
54 If not isB: G≥2
55 i← (rB, R) G≥2
56 (sk, k.c, k.m, t)← stB G<2
57 (k.c, k.m, t)← KT?[i] G≥2
58 sk ← SK?[i] G2−4
59 c ‖ ck ‖ τ ← C
60 Require vfyM(k.m, ad ‖ c ‖ ck, τ)
61 If forge: Abort G≥5.2
62 k ← dec(sk, c) G<3
63 Require k 6= ⊥ G<3
64 Require dec(SK?[i], c) 6= ⊥ G≥3
65 t

q← ad ‖C
66 k.o ‖ k.c∗ ‖ k.m ‖ sk ← H(k.c, k, t) G<3
67 k.o ‖ k.c∗ ‖ k.m ‖ sk ← G(k.c, t, i, F) G≥3
68 stB ← (sk, k.c∗, k.m, t) G<2
69 If isB: k.o ← �
70 KB[rB]← k.o
71 rB ← rB + 1
72 If not isB: G≥2
73 i← (rB, R) G≥2
74 KT?[i]← (k.c∗, k.m, t) G≥2
75 SK?[i]← sk G≥2
76 Return

Oracle ExposeB
77 KNB

∪← [rB, ...]
78 If isB:
79 KNA

∪← [rB, ...]
80 U← S G≥2
81 XSK ∪← [rB, ...]×[S] G≥2
82 Else: U← R G≥2
83 (k.c, k.m, t)← KT?[rB, U] G≥2
84 sk ← SK?[rB, U] G≥2
85 stB ← (sk, k.c, k.m, t) G≥2
86 Return stB
Oracle Challenge(u, j)
As in KIND

Figure 3.15: Proof of URKE.

87

3 Optimally Secure Ratcheting in Two-Party Settings

Game 2 – Synchronous simulation of B

From correctness, we can conclude that B will compute the same
values as A after processing the ciphertext from A under the condition
that the ciphertext was not manipulated in transmission (A further
generates the public key from the secret key and removes the secret
key afterwards). Therefore we do not simulate the receiving of B if
synchronicity was not disrupted. In order to simulate the exposure of
B correctly, we introduce two arrays SK?,KT? that track A’s internal
outputs (secret key and symmetric keys with transcript) after sending.

As soon as B receives a manipulated ciphertext, his state is estab-
lished from these arrays and then the simulation is further computed
according to the construction. Indexes of the arrays SK?,KT? are
tuples of a counter and a role indicator. This indicator is set to [R]
for stored values of only B and for the last common values among A
and B. We denote incrementing of index i+ 1 = (s, U) + 1 = (s+ 1, U)
such that the counter s is incremented. To shorten and clarify the
description, we merge the index parameters in variable i. Thereby i
differs from the game internal variable j used in oracles Reveal and
Challenge.

Additionally we introduce the array CK and the set XSK . XSK
is used to track which secret keys of A’s public keys are (potentially)
exposed. Thereby the indexes of both the secret key that is actually
exposed and all subsequent secret keys that are ‘derived’ from it are
unified in XSK . One secret key is derived from another one if the
earlier secret key (in combination with the simultaneously exposed
chaining key k.c) can be used to obtain all information (in particular
the encapsulated key k) to request the random oracle on output of
the next secret key. Array CK stores the encapsulated KEM keys k
of A for ciphertexts c under the public key with secret key i. This
resembles the use of array CK in game OW (see Figure 2.4) such that
the reduction can directly use this mapping in the reduction.

88

3.10 Proof of URKE

Random oracle

We construct our random oracle by defining several procedures that
program the simulated function and that can request the output on a
provided input. Procedures G and SetO are defined only for the sim-
ulation’s internal requests and oracle H is provided to the adversary.

The public oracle H is initially defined as a function that randomly
samples an output value on the first request of the input value and
outputs it on all further requests of this input. In addition to the
output, consisting of three symmetric keys and the secret key, a flag
sen is stored for every entry to trace the requests’ origin (i.e., whether
A’s simulation—the sender—initially requested the random oracle for
that entry or not).

The description of the random oracle from Figure 3.16 follows the
same principle as the one for the proof of SRKE (see Figure 3.19).

Oracle H(k.c, k, t) G≥0
00 Require k ∈ K
01 t′ ‖ ad ‖ c ‖ ck ‖ τ ← t
02 (k.o, k.c∗, k.m)←$ K3; sk ←$ SK
03 i← ε; sen ← F
04 If ∃i : R[k.c, t, k, i] 6= ⊥:
05 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, k, i]
06 Else if ∃i : R[k.c, t, ε, i] 6= ⊥
∧i ∈ N× [R]
∧dec(sk, c) = k, sk ← SK?[i]: G≥3

07 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, ε, i] G≥3
08 Else if ∃i : R[k.c, t, ε, i] 6= ⊥
∧i ∈ N× [S] ∧ CK [c, i] = k: G≥3

09 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, ε, i] G≥3
10 If i /∈ XSK : Abort G≥5.1
11 sk ← SK?[i+ 1] G≥4
12 (, k.m,)← KT?[i+ 1] G≥4
13 R[k.c, t, k, i]← (k.o, k.c∗, k.m, sk, sen)
14 Return k.o ‖ k.c∗ ‖ k.m ‖ sk

Proc G(k.c, t, i, sen) G≥3
15 t′ ‖ ad ‖ c ‖ ck ‖ τ ← t
16 k ← ε
17 If sen ∧ ∃k : R[k.c, t, k, ε] 6= ⊥:
18 Abort
19 Else if ¬sen ∧ ∃k : R[k.c, t, k, ε] 6= ⊥ :

dec(sk, c) = k, sk ← SK?[i]:
20 (k.o, k.c∗, k.m, sk, sen′)← R[k.c, t, k, ε]
21 Else:
22 (k.o, k.c∗)←$ K2; k.m ← ε; sk ← ε
23 If ¬sen: k.m ←$ K; sk ←$ SK
24 R[k.c, t, k, i]← (k.o, k.c∗, k.m, sk, sen)
25 Return k.o ‖ k.c∗ ‖ k.m ‖ sk

Proc SetO(k.c, t, i, k.m, sk) G≥3
26 (k.o, k.c∗, k.m′, sk ′, sen)← R[k.c, t, ε, i]
27 R[k.c, t, ε, i]← (k.o, k.c∗, k.m, sk, sen)
28 Return

Figure 3.16: Random oracle description for proof of URKE.

89

3 Optimally Secure Ratcheting in Two-Party Settings

Game 3 – Internal access to random oracle

We introduce the internal procedures to request the random oracle.
These procedures provide the simulation the opportunity to request
the random oracle output on an undefined input key k. The index
for the internal ‘storage’ array of the random oracle is thereby defined
by chaining key k.c and transcript t—hence implicitly by the last
ciphertext c—as inputs to the random oracle, as well as the index of
the key pair for which this last ciphertext is encapsulated. Hence, for
internally requested ciphertexts c, the correct but unknown key k is
implicitly programmed as input into the random oracle.
By requesting the random oracle without providing the decapsu-

lated key, the decapsulation and hence the previous secret key of B
are not needed to simulate receiving anymore. In order to correctly
simulate, the output of the decapsulation still needs to be compared
to the ⊥ symbol. When reducing to OW security, this comparison can
be conducted by requesting the game’s Check oracle without using the
respective secret key explicitly (see Figure 2.4).
External queries to the random oracle H are stored in entries of

the simulation’s array R, indexed by input tuples (k.c, k, t) together
with parameter i = ε to signal that the entries are not associated to
a secret key that is used by the simulation. The output values are
sampled uniformly at random for an initial request and afterwards
reaccessed from the described array entry. Initial internal queries are
stored with an empty string ε at the index parameter position of the
input KEM key k. Additionally, the index of the secret key i of the
previous KEM operation is set as array index parameter (for A’s sim-
ulation: index of secret key for public key with which encapsulation
outputting the last c in t was executed; for B’s simulation: index of
secret key with which decapsulation would have been called). For ini-
tial internal queries of A’s simulation, only the output session key k.o
and the output chaining key k.c∗ are sampled and set within G. The
remaining outputs are sampled independently and set by the proce-
dure SetO. This makes no difference regarding the simulation but will
be important for lazy sampling in game G4. For the simulation of B’s

90

3.10 Proof of URKE

internal queries, all outputs values are sampled at once.
In order to show how correctness and output distribution of the

random oracle are preserved under the above described behavior, we
first consider how the sequence of 1) an external request before 2) an
internal request to the same entry is processed and then vice versa.
Note that equality of queries cannot be verified via the input values
(k.c, k, t) since k is not specified for internal requests directly.
Two successive external requests are still processed as before: if

the respective entry does not exist yet, it is generated, otherwise it is
accessed and returned.
Two successive internal requests to the same entry only occur if

the adversary is able to predict a collision key of A. Note that, since
the inputs to the random oracle include the transcript, two successive
requests with the same transcript cannot be made by only A or only
B, respectively. As the simulation of B queries the random oracle
only out of sync, a random oracle request by A to an entry that
was created by B only occurs if the adversary manages to keep B’s
transcript equal to A’s transcript when A and B are out of sync.
This only happens if A’s and B’s transcripts equal in sync, then B
receives an adversarially crafted ciphertext c that brings him out of
sync, and finally A sends the same ciphertext c such that B is out
of sync but A’s and B’s transcripts equal again. In order to achieve
this, the adversary must predict collision key ck in A’s ciphertext c
when priorly crafting and sending the (same) ciphertext to B. Hence,
aborting in line 37 (Figure 3.15) can be bounded by 1/|K|. After this
abort-event, the same entry cannot be requested internally first by
one of A or B and then by the other one (as thereby B’s transcript
definitely differs from A’s transcript out of sync).
An internal random oracle request of A’s simulation is marked by

the last parameter of G set true (i.e., sen = T). For requests of this
form, the game aborts if there already exists any random oracle entry
with the same transcript and chaining key (independent of the KEM
key input k). Since the last ciphertext c in transcript t contains a
random collision key, sampled right before the internal random oracle
request—and thereby not known to the adversary—, the probability

91

3 Optimally Secure Ratcheting in Two-Party Settings

of the abortion in line 18 can be bounded by qH/|K|. (Note that due
to the input transcript each external random oracle query can only
collide with exactly one internal random oracle query.)
For internal requests of B’s simulation, previous random oracle en-

tries with the same transcript and chaining key are validated with
respect to the tuple (c, i, k) where c is the last ciphertext in t, k is the
input KEM key of an existing random oracle entry queried externally,
and i is the index of the secret key with which G is invoked. If k can
be decapsulated from c with SK?[i], then the existing random oracle
entry equals the one that was intended to be queried by the simula-
tion of B. Consequently all output values are taken from the found
external entry and returned by G.
If there exists an entry made internally (and hence without speci-

fied k) for an external random oracle request, a validation with respect
to the tuple (c, i, k) is conducted as well. Thereby external request
and internal entry are equal if the ciphertext of both inputs can be
decapsulated by secret key with index i from the internal entry’s index
parameters to the input key k from the external request. This valida-
tion is split into entries made by B (Figure 3.16 line 06) and entries
made by the A with secret key i (tracked by array CK ; Figure 3.16
line 08).
Array CK represents oracle Solve from the OW game (see Fig-

ure 2.4) that can only be queried for unexposed secret keys. In order
to access all ciphertext-secret key pairs of A, the reduction will man-
ually fill array CK for exposed secret keys and the Solve oracle is
requested for (the remaining) unexposed secret keys. Thereby the
simulation of array CK is sound.
Due to the abortion in the random oracle in line 18, a random or-

acle entry that is internally requested by A was not requested by the
adversary before. Similarly, due to the abortion during A’s sending in
line 37, all random oracle queries by B (out of sync) differ from A’s
random oracle queries. As argued before, the probability of an abor-
tion in game G3 can be upper bounded with qH, being the number
of external random oracle queries, and K, being the key space of the

92

3.10 Proof of URKE

collision key:
AdvG2,G3(D) ≤ qH + 1

|K|

Game 4 – Random oracle with lazy sampling

In game G4 we stop to set secret key and MAC key as part of the
output values of the internal random oracle requests of A’s sending.
Instead the actual output of the external random oracle is instantly
set as soon as the adversary requests it.
Random oracle entries, defined by the internal requests of B, are

still equipped with all output values as before. As we will show in
the next game, these outputs will not be challengeable anymore. This
game hop includes only cosmetic changes and is, hence, undetectable
by adversaries.

Game 5 – Abortion In game G5 we finally abort if the adversary
queries the random oracle for entries that reveal a challengeable key.
At first, game G5.1 is aborted if the adversary externally queries

an entry that was made by A with a ciphertext (encoded in t) that
is designated for an unexposed secret key (see Figure 3.16 line 10).
Since only entries made by A result in this abortion, it only occurs if
the adversary was able to derive a key k from a ciphertext c sent by
A to correctly request the random oracle.
To reduce the probability of this abortion event to OW security of

KEM K, the secret key with which the key k can be decapsulated
from the ciphertext c must not have been used by the simulation.
This holds because on the one hand, the secret key was not exposed
(by the abortion condition) and on the other hand, the random oracle
entry that would have contained this secret key as output was not
requested before, because otherwise the simulation would have been
aborted before.
It is now important to observe that the exposed keys in XSK cor-

respond to the adversarially known established keys in KNA (i.e.,
KNA = XSK). Hence for the game to be aborted, the random or-

93

3 Optimally Secure Ratcheting in Two-Party Settings

acle must be requested for any challengeable established key of A.
Consequently either the adversary did not request the random oracle
for an entry with which it would know an established key of A or the
game aborted and thereby game OW is won.

AdvG5,G5.1(D) ≤ Advow
K (BK)

After game G5.1, for gaining an advantage in winning the game,
the adversary can only gather information via requesting the random
oracle for asynchronously established keys of B.
Therefore consider that at receiving the first manipulated cipher-

text, the following conditions need to hold for forge = T (see lines
50–53): 1) A was not exposed to be impersonated towards B and
2) B’s current secret key was not marked to be exposed. In addition,
these conditions imply that 3) the last common random oracle query
of A and B was not requested by the adversary. Condition 3 holds
because condition 2 implies that A is challengeable and an external
query to a random oracle entry outputting a challengeable key would
have resulted in an abortion of game G5.1.
As a result of these conditions, the simulation did not leak the MAC

key in B’s state at receiving the manipulated ciphertext—except that
it was used to generate the MAC tag of a potentially sent ciphertext
of A—and the MAC key was sampled uniformly at random. Now
distinguishing between games G5.1 and G5.2 can be reduced to SUF
security of MAC M because G5.2 only aborts if the MAC tag was valid
but the ciphertext was manipulated and, as shown above, the MAC
key was not provided to the adversary. Hence in order to distinguish
between these two games, a distinguisher needs to provide a forged
MAC tag. Therefore a distinguisher’s advantage can be bounded by:

AdvG5.1,G5.2(D) ≤ Advsuf
M (BM)

If G5.2 did not abort, B cannot be challenged because either one of
conditions 1 or 2 were violated and therefore the remaining keys of B
are set to be known (see lines 51 and 79), or the state was erased due
to an invalid MAC tag.

94

3.11 Proof of SRKE

Finally the adversary can win game G5.2 with probability 1/2 be-
cause no information on a challengeable key of either A or B can be
gained by the adversary.

AdvG5.2(A) = 0

Proof result Taking the bounds drawn in the game hops above
provides us the upper bound of the advantage that an adversary has in
the URKE KIND game depending on the advantage of the adversaries
BK and BM:

Advkind
R (A) ≤ Advow

K (BK) + Advsuf
M (BM) + qH + 1

|K|

Please note that the URKE proof makes no use of the UpR oracle
of the KUOW game and therefore a generic CCA secure KEM suffices
to reach URKE (with a loss factor of qSndA). However, the update
algorithm could be used instead of generating new key pairs after
each sending and receiving since it provides the same functionality
and security but A would never learn the secret key to her public
key. This property plays a crucial role in case A’s random coins are
attacked during sending. We will consider this attack vector in depth,
and use the above sketched solution, in Chapter 4.

3.11 Proof of SRKE

Model and construction of SRKE are very similar to the model and
construction of URKE, respectively. Therefore, the proof follows the
same idea. The exact game hops are, however, more complex be-
cause of the more sophisticated employed primitives in the SRKE
construction and the management of variables due to the extended
communication setup (both parties can send and receive anytime).
Even though the security of URKE is implied by the security of

SRKE, for didactic reasons we provide both proofs.

95

3 Optimally Secure Ratcheting in Two-Party Settings

Overview

In addition to the proof of URKE, SRKE employs an abortion rule
in game G1 in case of a signature forgery. All remaining game hops
follow the same idea as the URKE proof: G2 restricts B’s simulation
to sending and out of sync receiving. Receiving in sync of B is sim-
ulated by the computations of A’s sending—which by correctness of
the construction has the same result. G3 programs the random ora-
cle with internal procedures for the simulation without the knowledge
of encapsulated kuKEM keys such that sent ciphertexts can include
embedded kuKEM challenges. To reduce the adversary’s random ora-
cle queries to the solution of the employed hardness assumptions, G4
starts to lazy sample the random oracle outputs—including the next
secret key and MAC key. Finally, G5 aborts on bad events which
are proven to only occur if the adversary broke one of the hardness
assumptions.
Figure 3.17 and Figure 3.18 depict the SRKE KINDR game (see

Figure 3.9) including our SRKE construction from Figure 3.10 and
the game hops described below. Figure 3.17 includes the initialization
of game and scheme, and the communication from B to A with a
helper procedure GetSK. The opposite communication direction is
depicted in Figure 3.18 with the oracles for the adversary to expose,
reveal, and challenge. The description of the random oracle can be
found in Figure 3.19.

Game 1 – Excluding signature forgeries

Game G1 aborts if the adversary successfully forges a signature to
drift the parties’ states out of sync. Thereby distinguishing between
the original game KINDR and G1 can be reduced to the SUF security
of the one-time signature scheme. In order to do so, the reduction
replaces key-pair generation, signing, and verification algorithms by
the SUF game’s oracles. To correctly simulate exposures of B that
also reveal B’s signing keys, the reduction can use the expose oracle
from our multi-instance SUF notion. The signer key sgk for which

96

3.11 Proof of SRKE

Simulation SbR(A)
00 R[·]← ⊥ G≥0
01 sA ← 0; rB ← 0; isA ← T
02 sB ← 0; rA ← 0; isB ← T
03 eA ← 0; EPA[·]← ⊥
04 E|<B ← 0; E>|

B ← 0
05 ACA[·]← ⊥; KB[·]← ⊥
06 ACB[·]← ⊥; KA[·]← ⊥
07 XPA ← ∅; KNA ← ∅; CHA ← ∅
08 XPB ← ∅; KNB ← ∅; CHB ← ∅
09 oosB ←∞; forgeB ← F; acosB ← ⊥ G≥1
10 SK?[·]← ⊥; KT?[·]← ⊥; P [·]← ⊥ G≥2
11 esA ← 0; erB ← 0; ims ← F G≥2
12 XSK ← ∅; Γ[·]← 0; CK [·]← ⊥ G≥2
13 oosA ←∞; forgeA ← F; acosA ← ⊥ G≥3
14 (sgk?, vfk)←$ genS G≥2 ?
15 (sk, pk)←$ genK
16 (k.c, k.m)←$ K2; t← ε
17 E |< ← 0; E>| ← 0
18 s← 0; r ← 0 G<2 r
19 E |<? ← 0; E>|

? ← 0 G≥2 ?
20 PK [·]← ⊥; PK [0]← pk
21 SK [·]← ⊥; SK [0]← sk G<2
22 LA[·]← ⊥; LA[0]← �
23 LB?[·]← ⊥ G≥2 ?
24 stA ← (PK , E, s, LA, vfk, k.c, k.m, t)
25 stB ← (SK , E, r, LB, sgk, k.c, k.m, t) G<2
26 KT?[0, 0, 0, S]← (k.c, k.m, ε) G≥2
27 SK?[0, 0, 0, S]← (sk, 0) G≥2
28 b′ ←$ A
29 Require KNA ∩ CHA = ∅
30 Require KNB ∩ CHB = ∅
31 Stop with b′

Oracle SndB(ad)
32 Require stB 6= ⊥
33 (SK , E, r, L, sgk, k.c, k.m, t)← stB G<2
34 (sk∗, pk∗)←$ genK
35 (sgk∗, vfk∗)←$ genS
36 E>|

? ← E>|
? + 1; SK [E>|]← sk∗ G<2 ?

37 ck ←$ K; C ← rB ‖ pk∗ ‖ vfk∗ ‖ ck G≥2 ?
38 σ ←$ sgn(sgk?, ad ‖C) G≥2 ?
39 sgk? ← sgk∗ G≥2 ?
40 C ← C ‖σ; LB?[E>|

?]← / ‖ ad ‖C G≥2 ?
41 stB ← (SK , E, r, L, sgk, k.c, k.m, t) G<2
42 If sB = oosA ∧ (ad, C) = acosA: G≥3
43 Abort G≥3
44 If isB:
45 ACB[sB]← (ad, C)
46 E>|

B ← E>|
B + 1

47 sB ← sB + 1
48 If isB: SK?[E>|

? , 0, 0, S]← (sk∗, sB) G≥2
49 Else: SK?[E>|

? , 0, 0, R]← (sk∗, sB) G≥2
50 Return C

Oracle RcvA(ad, c)
51 Require stA 6= ⊥
52 If isA ∧ACB[rA] 6= (ad, c):
53 isA ← F
54 oosA ← rA; acosA ← (ad, c) G≥3
55 If rA ∈ XPB:
56 KNA

∪← N× [sA, ...]
57 ims ← T G≥2
58 Else if oosB > rA: forgeB ← T G≥1
59 If isA: eA ← eA + 1
60 (PK , E, s, L, vfk, k.c, k.m, t)← stA
61 t

q← / ‖ ad ‖C; C ‖σ ← C
62 Require vfyS(vfk, ad ‖C, σ)
63 If forgeB: Abort G≥1
64 r ‖ pk∗ ‖ vfk ‖ ck ← C
65 Require L[r] 6= ⊥
66 L[..., (r − 1)]← ⊥; L[r]← �
67 For s′ ← r + 1 to s:
68 pk∗ ← up(pk∗, L[s′])
69 Γ[E>| + 1, S]← Γ[E>| + 1, S] + 1 G≥2
70 E>| ← E>| + 1; PK [E>|]← pk∗
71 stA ← (PK , E, s, L, vfk, k.c, k.m, t)
72 If stA = ⊥: Return ⊥
73 rA ← rA + 1
74 Return

Proc GetSK(U1, U2) G≥2
75 If U1 = S: (, LA,)← stA; P ← LA
76 SK [·]← ⊥
77 (sk, s)← SK?[E |<? , erB, 0, U1]
78 SK [E |<?]← sk; SK?[E |<? , erB, 0, U2]← (sk, s)
79 For ε from E |<? + 1 to E>|

? :
80 l← max(` : SK?[ε, 0, `, U1] 6= ⊥)
81 (sk, s)← SK?[ε, 0, l, U1]
82 SK?[ε, 0, l, U2]← (sk, s)
83 For `← l + 1 to rB − s:
84 p← P [rB − s+ `]
85 sk ←$ up(sk, p)
86 SK?[ε, 0, `, U2]← (sk, s)
87 SK [ε]← sk
88 Γ[ε, R]← rB − s
89 Return SK

Note on interval variables EB, E,E?:
EB is the KIND game’s interval for B which
stops increasing out of sync,
E denotes the intervals in A’s and B’s states
locally, and
E? is the global substitution for the interval in
B’s state (for G≥2).

Figure 3.17: Proof of SRKE containing initialization, communication from B to
A, and two helper procedures.

97

3 Optimally Secure Ratcheting in Two-Party Settings

Oracle SndA(ad)
00 Require stA 6= ⊥
01 (PK , E, s, L, vfk, k.c, k.m, t)← stA
02 i← (E |<, esA, 0, S) G≥2
03 If E |< 6= E>|: esA ← 0 G≥2
04 k∗ ← ε; ck ←$ K; C ← E>| ‖ ck
05 For e′ ← E |< to E>|:
06 (k, c)←$ enc(PK [e′])
07 CK [c, i]← k G≥2
08 k∗

q← k; C q← c G<3 k
∗ q← k

09 If ims: k∗ q← k G≥3
10 I

q← i; i← (e′ + 1, 0,Γ[e′ + 1, S], S) G≥2
11 τ ← tag(k.m, ad ‖C)
12 C

q← τ ; t q← . ‖ ad ‖C
13 If ims: y ‖ k.m ‖ sk ← H(k.c, k∗, t) G≥3 If ims
14 Else: G≥3
15 y ‖ ← G(k.c, t, I, T) G≥3
16 k.m ←$ K; sk ←$ SK G≥3
17 SetO(k.c, t, I, k.m, sk) G3−4
18 k.o ‖ k.c ← y
19 pk ← genK(sk)
20 PK [..., (E>| − 1)]← ⊥; PK [E>|]← pk
21 E |< ← E>|; s← s+ 1; L[s]← ad ‖C
22 stA ← (PK , E, s, L, vfk, k.c, k.m, t)
23 If sA = oosB ∧ (ad, C) = acosB: G≥3
24 Abort G≥3
25 If isA:
26 ACA[sA]← (ad, C)
27 EPA[sA]← eA
28 KA[eA, sA]← k.o
29 sA ← sA + 1
30 esA ← esA + 1; i← (E>|, esA, 0, S) G≥2
31 If not ims: G≥2
32 KT?[i]← (k.c, k.m, t) G≥2
33 SK?[i]← (sk,⊥) G≥2
34 Return C

Oracle ExposeA
35 If isA: XPA ∪← {sA}
36 Return stA
Oracle ExposeB
37 KNB

∪← [E|<B ..E
>|
B]× [rB, ...]

38 If isB:
39 XPB ∪← {sB}
40 KNA

∪← [E|<B ..E
>|
B]× [rB, ...]

41 U← S G≥2
42 XSK ∪← [E |<?]× [erB, ...]×N× [S] G≥2
43 XSK ∪← [E |<? + 1 ..E>|

?]× N2 × [S] G≥2
44 Else: U← R G≥2
45 (k.c, k.m, t)← KT?[E |<? , erB, 0, U] G≥2
46 SK ← GetSK(U, U) G≥2
47 stB ← (SK , E?, rB, LB?, sgk?, k.c, k.m, t) G≥2
48 Return stB
Oracle Reveal(u, j)

as in URKE (Fig. 3.6)

Oracle Challenge(u, j)
as in URKE (Fig. 3.6)

Oracle RcvB(ad, C)
49 Require stB 6= ⊥
50 If isB ∧ACA[rB] 6= (ad, C):
51 isB ← F
52 oosB ← sB; acosB ← (ad, C) G≥1
53 GetSK(S, R) G≥2
54 KT?[E |<? , erB, 0, R]← KT?[E |<? , erB, 0, S] G≥2
55 If rB ∈ XPA:
56 KNB

∪← N× [rB, ...]
57 Else if (E |<? , erB, 0, S) /∈ XSK : G≥5
58 forgeA ← T G≥5
59 If isB ∧ E|<B 6= EPA[rB]:
60 E|<B ← EPA[rB]
61 E |<? ← EPA[rB]; erB ← 0 G≥2
62 If not isB: G≥2
63 i← (E |<? , erB, 0, R) G≥2
64 (SK , E, r, L, sgk, k.c, k.m, t)← stB G<2
65 (k.c, k.m, t)← KT?[i] G≥2
66 SK ← GetSK(R, R) G≥2
67 t∗ ← ad ‖C; C ‖ τ ← C
68 Require vfyM(k.m, ad ‖C, τ)
69 If forgeA: Abort G≥5.4
70 k∗ ← ε; e ‖ ck ‖C ← C
71 Require E |<? ≤ e ≤ E>|

? G≥2 ?
72 If E |<? 6= e: erB ← 0 G≥2
73 t

q← LB?[E |<? + 1] ‖ . . . ‖L[e] G≥2 ?
74 LB?[..., e]← ⊥ G≥2 ?
75 For e′ ← E |<? to e: G≥2 ?
76 c ‖C ← C
77 k ← dec(SK [e′], c) G<3
78 Require k 6= ⊥ G<3
79 Require dec(SK?[i], c) 6= ⊥ G≥3
80 k∗

q← k G<3
81 I

q← i; i← (e′ + 1, 0,Γ[e′ + 1, R], R) G≥2
82 t

q← . ‖ t∗
83 k.o ‖ k.c ‖ k.m ‖ sk ← H(k.c, k∗, t) G<3
84 k.o ‖ k.c ‖ k.m ‖ sk ← G(k.c, t, I, F) G≥3
85 SK [..., (e− 1)]← ⊥; SK [e]← sk G<2
86 For e′ ← e+ 1 to E>|: G<2
87 SK [e′]← up(SK [e′], t∗) G<2
88 E |< ← e; r ← r + 1 G<2 r
89 stB ← (SK , E, r, L, sgk, k.c, k.m, t) G<2
90 If stB = ⊥: Return ⊥
91 If isB: k.o ← �
92 KB[E|<B, rB]← k.o
93 rB ← rB + 1
94 erB ← erB + 1 G≥2
95 If not isB: G≥2
96 i← (E |<? , erB, 0, R) G≥2
97 KT?[i]← (k.c, k.m, t) G≥2
98 SK?[i]← (sk,⊥) G≥2
99 P [rB]← t∗ G≥2

100 GetSK(R, R) G≥2
101 Return

Figure 3.18: Proof of SRKE considering communication from A to B and the
remaining oracles of KINDR.
98

3.11 Proof of SRKE

the adversary provides a forgery—to distinguish within the first game
hop—was not exposed because otherwise either the receive counter rA
is in the set of exposed counters XPB or A was out of sync earlier such
that oosB ≤ rA holds and therefore forgeB would not be set (see lines
55–58).
The advantage of an adversary D to distinguish between the original

game and G1 can be upper bounded by:

Advkind,G1
R (D) ≤ Advsuf

S (BS)

Game 2 – Synchronous simulation of B

Using the correctness of our construction, we can again simulate the
receiving of unmodified ciphertexts by B with the simulation of A.
Therefore we remove B’s state in game G2 and trace the respective
variables with global arrays and counters.
To fully understand this game hop, we divide its description on

the basis of the introduced and used variables. At first the counters
(E |<? ,E>|

? , esA, erB)—and thereby the indexing scheme of the intro-
duced arrays—are explained. Then the usage of the arrays, tracing
secret keys (SK?) and symmetric keys (KT?), are presented. The array
SK in B’s state is not simulated directly with one array but instead
compiled from the array of all secret keys SK? as soon as it is needed.
Due to the complexity of the compilation, the simulation of array SK
(under usage of arrays SK?,Γ and procedure GetSK) is explained sep-
arately. Conclusively, this game introduces an array XSK and a flag
ims to comprehensively indicate which secret keys are exposed and
how this influences an impersonation towards the sender.

Defining global variables and counters The interval of epochs E,
the array of sent ciphertext-associated-data pairs LB, and the sign-
ing key sgk in B’s state are declared as global variables to simulate
exposures without maintaining B’s state as a whole. To highlight
this modification, the variable symbols are indexed with the ? symbol
(E?, LB?, sgk?). The variable r in B’s state is replaced by the already

99

3 Optimally Secure Ratcheting in Two-Party Settings

existing variable rB that is maintained by the game. These replace-
ments are denoted by a "?" at the right margin of the corresponding
lines. We can use rB instead of r because both variables are incre-
mented equally. Additionally, the counters esA, erB are introduced
for counting the send and receive operations within an epoch. Hence
both counters are reset for every new epoch.

Variable
of A

Explanation Corresponding
Variable of B

Explanation

E |< in stA Epoch to which A sent
last ciphertext

E |<? Epoch for which B re-
ceived last ciphertext

E>| in stA Newest epoch that was
proposed to A

E>|
? Newest epoch that B

proposed to A
esA Number of sent cipher-

texts to the current
epoch E |<

erB Number of received ci-
phertexts for the oldest
cached epoch E |<?

sA Total number of sent ci-
phertexts

rB Total number of re-
ceived ciphertexts

Table 3.1: Variables for indexing arrays in the simulation of games G≥2. The
following conditions hold in presence of a passive adversary: E |<

? ≤ E |< ≤ E>| ≤
E>|

? , E |< = E |<
? ⇒ esA ≥ erB .

Indexing arrays The index of the arrays SK?,KT?, and the set
XSK consists of four parameters: 1) the epoch counter, 2) within
this epoch, the number of send or receive operations (specified by esA
or erB), 3) the number of updates (also called level) of the secret key
via the kuKEM up algorithm (set to 0 for array KT?), and 4) a tag that
indicates whether the entry was used by B’s simulation. We emphasize
that the index scheme of the key array K instead consists of the epoch
counter and the number of total send or receive operations (specified
by sA or rB). It is easy to see that there exists a function that trans-
lates these two indexing schemes into each other when disregarding
the level and tag parameter. While the indexing via total operation
counters simplifies the phrasing of the adversary’s winning conditions
in our game description, indexing via counters within epochs is more

100

3.11 Proof of SRKE

natural for the simulation in our proof. Table 3.1 provides an intuitive
explanation of the index parameters for the simulation.
The indexing scheme for the arrays is constructed to model the

usage of secret keys in SRKE—thereby it can also be used to index
the symmetric key array KT?. The index for a freshly generated secret
key for a new epoch is obtained by increasing the epoch counter and
resetting all remaining index parameters (see Figure 3.17 lines 36, 48,
49 and Figure 3.18 lines 03, 61, 72). When deriving a secret key from
the random oracle, the counter within the epoch is increased and the
level parameter, to be explained hereafter, is reset (see Figure 3.18
lines 30, 94, 96). Finally, secret keys can be updated. Therefore,
the index includes the level parameter that is increased with every
update operation (see Figure 3.17 lines 83–86). In addition to the
epoch number, the counter within the epoch, and the level of a secret
key, a tag U ∈ {S, R} indexes SK?,KT?,XSK . As in the URKE proof,
S denotes values that are used for simulation of A. Entries marked
with R are used by the explicit simulation of B—consequently these
entries are only used from the moment of receiving the ciphertext that
causes B to become out of sync onwards (see Figure 3.18 lines 53–54).

Usage and computation of arrays As in the URKE proof, the
arrays SK?,KT? store the secret keys and tuples of chaining key, MAC
key, and transcript after each sending and receiving operation respec-
tively. Writing and reading the array KT? is conducted straight for-
ward as it is in the URKE proof.
Freshly generated secret keys and secret keys as output of the ran-

dom oracle are directly stored in SK?. To reassemble the construc-
tion’s array SK at exposures, or for simulating the receiving out of
sync, we use the array of secret keys SK? in procedure GetSK (see
Figure 3.17). As for the original array SK , this procedure sets the
current epoch’s secret key in the entry for the current epoch, and all
subsequent entries are filled with the first secret key within the re-
spective epoch. To derive the correct updated secret keys for cached
epochs in SK (epoch index greater than E |<?), updates in sync use the

101

3 Optimally Secure Ratcheting in Two-Party Settings

LA array of A’s state to obtain the correct ciphertexts and associated
data as update parameters. Out of sync, the helper-array P is first
filled with the entries of LA and then further filled by the simulation
of B (see Figure 3.17 line 75, Figure 3.18 lines 53,66,99,100). To cor-
rectly simulate the updates, already defined secret keys are taken and
further updates are based on the latest existing updated secret key15

(see Figure 3.17 lines 80 ff.). To adopt secret keys marked with S when
B becomes out of sync, GetSK copies the most often updated entry
(highest level) of each secret key and potentially further updates these
keys accordingly. To track when a secret key was initially generated,
the counter s is stored for each secret key sent by B (see Figure 3.17
lines 48,49). The number of necessary updates can then be derived
by the difference between the number of received ciphertexts by Bob
and the value of the send counter attached to the secret key in SK?.
To ensure that all secret keys are updated according to the con-

struction of the receive algorithm, such that validation in the random
oracle is correct, GetSK is invoked a second time at the end of B’s
receive operation.
For the next game hop, we prepare a cumulative index I that refers

to each secret key, used during decapsualtion when B receives (see
Figure 3.18 line 81), or to each corresponding public key, used during
encapsulation when A sends (see Figure 3.18 line 10). The according
single indexes i of these secret keys and their public counterparts used
in a send or receive operation, respectively, are concatenated in this
index list I. This cumulative index I, hence, points to all secret keys
with which input tuples (c, k) to the following random oracle query in
a send or receive operation can be decapsulated.
We recall that the third parameter of indexes i indicates the update-

level (i.e., the number of updates) of the respective secret key. Array
Γ, therefore, stores the number of updates for each secret key. While
for the simulation of A Γ is filled at receiving a new public key (see

15Please note that the update algorithm is a one way function and regarding the
reduction, the simulation has to comply with the KUOW game’s update oracle
which can only be called sequentially.

102

3.11 Proof of SRKE

Figure 3.17 line 69), the simulation of B can compute Γ along the
computation of the secret key in GetSK (see Figure 3.17 line 88).
Note that only the first secret key within an epoch needs to be tracked
because later keys will not be updated in our SRKE construction.

Exposure and impersonation For tracing exposed secret keys,
we introduce the set XSK that is filled with the indexes of exposed
secret keys (secret keys that belong to A’s public keys). Secret keys
are marked to be exposed if they are stored in the exposed array SK .
Additionally all subsequent secret keys that are directly derived from
these secret keys (i.e., generated within the same epoch) are marked to
be exposed, since they can be obtained from the random oracle with
the exposed secret keys and the chaining key that is also exposed, or
from the publicly known update parameter (ciphertext and associated
data). If A and B are out of sync, the updates of secret keys via
kuKEM update or random oracle are computed with different values
(ad ‖C of A and B are different).16 Hence, none of A’s public keys’
secret keys are exposed by B out of sync.

If B is impersonated towards A—i.e., the in-sync state of B for com-
puting the ciphertext to A was exposed and the ciphertext-associated-
data pair received by A was not sent by B—, then flag ims is set (see
Figure 3.17 line 57). Thereby all future computations by A are trace-
able and known by the adversary. After the flag ims is set, we stop to
store secret keys from the random oracle outputs in A’s simulation.
Secret keys generated by A after the impersonation are never used by
B (because from this moment on the parties are out of sync) and A
only needs the respective public keys anyway.
As in URKE, the array CK is introduced in game G2 to track the

triple (c, k, i) after each encapsulation.
Apart from preparations for subsequent games (e.g., setting up in-

dexes, XSK , and ims), this game hop substitutes B’s state by in-
troducing global variables and counters. Thereby B is only explicitly
16We make sure that no collision in the transcript occurs by aborting on colliding

collision keys in the next game hop.

103

3 Optimally Secure Ratcheting in Two-Party Settings

simulated for sending and for computations out of sync. All remaining
computations are either conducted by A’s simulation or by the helper
procedure GetSK.

Game 3 – Internal access to random oracle

Game G3 is also directly adapted from the URKE proof: the simula-
tion requests the random oracle without providing the input key k∗.
There are only two minor differences that do not affect the underly-
ing principle. Firstly, the input to the random oracle is a vector of
keys k∗ = k1 ‖ .. ‖ kn. The input transcript t is accordingly also com-
posed of the concatenation of ciphertext vectors c1 ‖ .. ‖ cn and the
index provided to the internal procedure G consists of multiple secret
key indexes I = i1 ‖ .. ‖ in. Secondly, not all internal random oracle
requests of A are issued via the internal procedure G.

Oracle H(k.c, k∗, t) G≥0
00 k1 ‖ .. ‖ kn ← k∗

01 t′ ‖ ad ‖ e ‖ ck ‖ c1 ‖ .. ‖ cn ← t
02 (k.o, k.c∗, k.m)←$ K3; sk ←$ SK
03 I ← ε; sen ← F
04 If ∃I : R[k.c, t, k, I] 6= ⊥:
05 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, k, I]
06 Else if ∃I = i1 ‖ .. ‖ in : R[k.c, t, ε, I] 6= ⊥
∧∀j, 1 ≤ j ≤ n : ij ∈ N3 × [R]
∧dec(skj , cj) = kj , (skj , s)← SK?[ij]: G≥3

07 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, ε, I] G≥3
08 Else if ∃I = i1 ‖ .. ‖ in : R[k.c, t, ε, I] 6= ⊥
∧∀j, 1 ≤ j ≤ n : ij ∈ N3 × [S]
∧CK [cj , ij] = kj : G≥3

09 (k.o, k.c∗, k.m, sk, sen)← R[k.c, t, ε, I] G≥3
10 (ej ,)← ij G≥5
11 If en < oosA ∧ in /∈ XSK : Abort G≥5.1
12 If e1 < oosA ∧ en ≥ oosA: Abort G≥5.2
13 If e1 ≥ oosA: Abort G≥5.3
14 (sk,)← SK?[in + 1] G≥4
15 (, k.m,)← KT?[in + 1] G≥4
16 R[k.c, t, k, I]← (k.o, k.c∗, k.m, sk, sen)
17 Return k.o ‖ k.c∗ ‖ k.m ‖ sk

Proc G(k.c, t, I, sen) G≥3
18 t′ ‖ ad ‖ e ‖ ck ‖ c1 ‖ .. ‖ cn ← t
19 i1 ‖ .. ‖ in ← I
20 k∗ ← ε
21 If sen ∧ ∃k∗ : R[k.c, t, k∗, ε] 6= ⊥:
22 Abort
23 Else if ¬sen ∧ ∃k∗ = k1 ‖ .. ‖ kn :

R[k.c, t, k∗, ε] 6= ⊥ ∧ ∀j, 1 ≤ j ≤ n :
dec(skj , cj) = kj , (skj , s)← SK?[ij]:

24 (k.o, k.c∗, k.m, sk, sen′)← R[k.c, t, k∗, ε]
25 Else:
26 (k.o, k.c∗)←$ K2; k.m ← ε; sk ← ε
27 If ¬sen: k.m ←$ K; sk ←$ SK
28 R[k.c, t, k∗, I]← (k.o, k.c∗, k.m, sk, sen)
29 Return k.o ‖ k.c∗ ‖ k.m ‖ sk

Proc SetO(k.c, t, I, k.m, sk) G≥3
30 (k.o, k.c∗, k.m′, sk ′, sen)← R[k.c, t, ε, I]
31 R[k.c, t, ε, I]← (k.o, k.c∗, k.m, sk, sen)
32 Return

Figure 3.19: Random oracle description for proof of SRKE.

In case an impersonation of B towards A was performed by the

104

3.11 Proof of SRKE

adversary such that ims is set, the simulation of A strictly follows the
construction description and no (kuKEM) challenges are embedded by
the simulation. This is sufficient since no future established session
key will be challengeable. Consequently the respective random oracle
requests do not need to be issued without the knowledge of the kuKEM
keys in k∗ and, as such, can be computed by using H instead of G.

As described in the previous game, the cumulative index I contains
a vector of all indexes to which the send or receive operations en-
capsulated or decapsulated right before the random oracle invocation,
respectively. Thereby the tuple (C, I, k∗) = (c1 ‖ .. ‖ cn, i1 ‖ .. ‖ in,
k1 ‖ .. ‖ kn) is processed in SRKE instead of a tuple consisting of one
value each in URKE. The validation of the inputs to the random or-
acle for finding existing equal entries now works accordingly: If there
exist an entry created by an external query for the internal query by
B’s simulation with the same transcript t and each ciphertexts cj at
the end of t can be decapsulated with the respective secret key with
index ij in I to the key kj of the external entry’s input k∗, then the
queries were equal and the output of the internal query is copied from
the external one. For queries of A’s simulation that collide with an
entry made externally (see Figure 3.19 line 22), and for ciphertexts
sent by A or B that were equally received by the respective counter-
part before (see Figure 3.17 line 43 and Figure 3.18 line 24), the game
aborts as in the URKE proof.
If the adversary externally requests the random oracle, the valida-

tion is again split (in order to comply with the KUOW game’s oracles).
The vector of ciphertexts in the transcript and the vector of keys in
the input key k∗ are validated with respect to the existing internally
made entries and their vectors of secret key indexes. If there exists
an entry made internally (marked with ε at the index position of k∗)
such that 1) either each secret key ij from the cumulative index I of
this entry can be used to decapsulate the respective ciphertext to the
respective key in k∗ (see line 06) or 2) all tuples (cj , ij , kj) were stored
in the array CK (see line 08), then the external query and internal
entry are equal. In this case the output of the external random oracle
query is copied from this internal entry.

105

3 Optimally Secure Ratcheting in Two-Party Settings

Splitting the validation is done to prepare the reduction to the
KUOW game: The decryption for entries made by B’s simulation can
be conducted by using the Check oracle. The Solve oracle is modeled
by array CK . As in URKE, the reduction will fill CK for exposed
secret keys explicitly because the Solve oracle can only be used for
unexposed secret keys. In addition to that, the reduction will fill CK
also directly for public keys for which the simulation never has access
to the respective secret keys. This is the case for all public keys re-
ceived by A after becoming out of sync without an impersonation (ims
was not set). The adversary can instead impersonate B delayed: if
first A is impersonated towards B and then B is exposed, B’s signing
key is still valid such that the adversary can use it to send valid own
ciphertexts to A. Thereby the adversary can send public keys to A for
which the adversary (but not the simulation) knows the secret keys.
In this case, CK is filled instantly after the encapsulation.

As in the URKE proof, the output MAC key and secret key are
sampled independent of the random oracle for internal queries by A.
The probability of the abortion for predefined random oracle entries

colliding with internal queries by A, or sent ciphertexts colliding with
previously received ciphertexts, is again the bound for distinguishing
between games G2 and G3, where qH is the number of random oracle
requests:

AdvG2,G3(D) ≤ qH + 2
|K|

Requesting the random oracle without providing the cumulated
key k∗ allows to disregard the decapsulation and hence the usage of
secret keys for the simulation of B. For comparing the decapsulation
output with the ⊥ symbol, KUOW’s Check oracle will be used such
that the secret key of B does not need to be used explicitly. To em-
phasize this, the input to the decapsulation in line 79 is the respective
element from the global secret key array SK?, implicitly disregarding
its second value s.

106

3.11 Proof of SRKE

Game 4 – Random oracle with lazy sampling

In game G4 we stop to set the output MAC keys and secret keys for
random oracle queries by A’s simulation if ims is not set. Thereby the
explicit usage of these keys is shifted to the validation in the random
oracle, providing the output for external random oracle requests, and
to exposures of B. We will show that the former and letter use cases
can be simulated by the reduction to the KUOW or SUF game respec-
tively. The second use case will either not occur without breaking the
underlying hardness assumption, or it can also be simulated by using
the oracles of the respective games in the reduction.
Please note that our variant of incrementing index i is that the

counter es within the epoch is incremented and the level parameter is
reset: i+ 1 = (e, es, l, U) + 1 = (e, es+ 1, 0, U).

Game 5 – Abortions

Our abortion conditions for SRKE split the key establishment into
four cases: 1) keys established by A in sync, 2) the first key established
by A out of sync, 3) all remaining keys established by A out of sync,
and 4) keys established out of sync by B.

We first want to provide an intuition for these cases: At the be-
ginning of the communication, the parties are in sync. Thereby only
an abortion according to case 1) can occur. Manipulating a cipher-
text from A to B now introduces cases 4) and, with a delay until the
next ciphertext is delivered in the opposite direction, also cases 2) and
3). It is necessary to understand that for provoking an abortion in
games G5.2 and G5.3, a ciphertext to A can only be manipulated after
B was already out of sync. The reason for this lies in the abortions
of game G1 and G3. If G1 and G3 do not abort, for ciphertexts to
A either an impersonation occurred, or an invalid ciphertext was re-
ceived by A, or the ciphertext of B was correctly delivered to A. The
former case prevents the simulation from embedding challenges to the
random oracle, the latter case does not drift A’s state out of sync,
and the second case provokes the state of A to be erased because the

107

3 Optimally Secure Ratcheting in Two-Party Settings

signature verification will fail.
We split the first three abortion rules for didactic reasons. There-

fore, the reduction loses the factor 3 with respect to the advantage
in winning the KUOW game. It will become obvious that all three
abortions can be summarized to one condition that can be reduced to
one instance of the KUOW game such that the reduction would be
tight with respect to the employed assumptions.
In the subsequent paragraphs it is called explicit use of a value, if the

simulation provides this value to the adversary. If the value was only
used for a computation—which can be simulated by the underlying
game’s oracles in the reduction—it was not explicitly used.

Game 5.1 – Keys established by A in sync Aborting in game
G5.1 depends on two conditions for an external random oracle query
for which an internally defined entry of A exists: A was in sync when
requesting the random oracle for the entry that is externally requested
and the secret key skn with index in, that can be used to decapsu-
late the last key kn from the last cn in t, as input to the random
oracle, was not exposed. The public key to the initial secret key of
the same epoch as skn—secret key with the same value in the epoch
index parameter but send and level parameter set to 0—was originally
sent by B in sync and correctly delivered to A because otherwise A
would have been out of sync already (which would violate the first
condition). By condition two, the secret key skn was not exposed.
This condition can be fulfilled in two ways: either B derived the same
secret key skn as A, or B became out of sync before an exposure and
thereby derived different secret keys in this epoch. In the first case,
the condition simply holds because otherwise the secret key would be
marked to be exposed (and thereby key k∗ would not be challenge-
able). In the second case, the secret keys of B are differently updated
or freshly generated in the random oracle such that the exposure of
B’s secret keys has no influence on A’s established keys. Thereby the
reduction can make use of the KUOW game’s oracles UpR and Gen—
and if needed Expose—for simulating B’s updates and outputs of the

108

3.11 Proof of SRKE

random oracle for the differently derived secret keys.
Apart from obtaining the secret key via an exposure of B, the adver-

sary can obtain it from the output of the random oracle if n = 1 holds
(i.e., skn = sk1 was derived from the random oracle). This, however,
can be excluded for the following reason: for this previous internal
random oracle entry, outputting secret key with index i1, there exists
a secret key with index i′n. Both indexes have the same epoch pa-
rameters since i′n was the last secret key index of the random oracle
entry outputting secret key with index i1. As a consequence, the same
conditions regarding an abortion in this game for an external query of
the random oracle hold. If the adversary requested the random oracle
for this entry, outputting the secret key with index i1, the game would
have been aborted before.
Since with providing the correct kn for cn and secret key with in-

dex in, the adversary solves the challenge of the KUOW game, and,
as described above, the secret key with in was not explicitly used by
the simulation, the advantage in distinguishing between G5 and G5.1
can be bounded by the advantage of winning the KUOW game:

AdvG5,G5.1(D) ≤ Advkuow
K (BK)

Game 5.2 – First key established by A out of sync Game G5.2
aborts if the adversary queries the random oracle for the entry that
was created by the internal request of A via G directly after becoming
out of sync. Thereby at most three types of public keys are used by
A for the encapsulations before her internal random oracle request:
1) The public key derived from the last random oracle query’s output
secret key sk1, 2) public keys that were sent by B in sync and correctly
delivered to A, and 3) public keys received by A that caused her to
become out of sync or that were received thereafter. While there exist
at least one public key of type 1 and one of type 3, it is not necessary
that A also encapsulated to a newly received public key that was sent
in sync by B.

As described earlier, for computing challengeable keys, A only be-
comes out of sync because B drifted out of sync before. Letting A drift

109

3 Optimally Secure Ratcheting in Two-Party Settings

out of sync solely would cause the ims flag to be set, or G1 to abort, or
G3 to abort, or the state of A being erased (preventing the computa-
tion of challengeable keys). According to this, B must not have been
exposed before drifting out of sync because otherwise the ciphertext,
that causes A to become out of sync, is considered as an impersonation
such that ims is set. As a consequence, the secret key of the newest
public key used by A before querying the random oracle, that results
from a public key sent by B in sync, was not exposed17. This is either
the public key to the secret key sk1 with index i1 and hence of type
1, or the public key to a secret key skj with index ij , 1 < j < noos
of type 2, where noos is the (publicly observable) position of the first
type-3 public key used for encapsulation in this send operation. Ei-
ther way the respective secret key (sk1 or skj) was not exposed before
B became out of sync and was updated or derived differently from A
when B became out of sync afterwards. If this public key is of type 2,
its secret key skj can only be obtained by an exposure of B because it
was freshly generated. Secret key sk1 of public key of type 1 can also
be obtained by the random oracle. The random oracle query that out-
puts this secret key sk1 is associated to the previous secret key sk ′n in
the same epoch since i′n was the last secret key index for this previous
random oracle entry. If no public key of type 2 exists, this previous
secret sk ′n must not have been exposed because otherwise the whole
epoch would be marked as exposed which would cause the ciphertext
drifting A out of sync to be considered as an impersonation. As such,
the random oracle entry outputting the secret key sk1 fulfills the con-
ditions for an abortion of game G5.1 and can thereby be excluded for
game G5.2.

Conclusively, if there exists a public key of type 2 with secret key
index ij , then this secret key was not explicitly used by the simulation
and thereby the adversary’s external random oracle with input kj
and cj can be used to solve the KUOW challenge. Similarly, if no
17Results from means that the public key sent in sync by B and received in sync by

A was possibly updated and possibly used to feed the random oracle to obtain
the public key that was actually used by A in the considered abortion—hence
both keys (pk used by A and pk sent by B) are in the same epoch.

110

3.11 Proof of SRKE

kuKEM keys are fed into the internal random oracle query of A that
correspond to type-2 public keys, then the secret key with index i1
was not explicitly used by the simulation and (k1, c1) solve the KUOW
challenge. Therefore, distinguishing between G5.1 and G5.2 can be
reduced to the KUOW security of the kuKEM:

AdvG5.1,G5.2(D) ≤ Advkuow
K (BK)

Game 5.3 – Further keys established by A out of sync In
game G5.3 for an internally created random oracle entry that causes
an abortion, A and B were out of sync when A requested the random
oracle for this entry. The first public key, used for the encapsulation
before this request, is the result of A’s distinct previous random oracle
request (meaning that B never queries this request). This previous
random oracle request was distinct because by the condition (e1 ≥
oosA) A requested the random oracle out of sync at least once before,
since i1 has always the same epoch as i′n from the last random oracle
request. Since A and B are out of sync—and thereby their random
oracle requests are independent—, the secret key to each first public
key for the encapsulation during a send operation can only be obtained
by the random oracle. Requesting the random oracle for one of these
entries externally would cause the game to abort—either according to
gameG5.2 for the first random oracle query out of sync, or according to
this game for all subsequent queries of A. Therefore, by the conditions
of the abortion, the secret key to the first public key of each send
operation of A out of sync was not explicitly used and hence not
known to the adversary such that the tuple (k1, c1) solves the KUOW
challenge of the kuKEM. Please note that impersonations ofB towards
A are implicitly excluded since A’s simulation invokes G only if ims
was not set. Hence we can bound the probability of an abortion in
G5.3 by the advantage of winning the KUOW game:

AdvG5.2,G5.3(D) ≤ Advkuow
K (BK)

We note that the abortion event of this game hop can be reduced
to the OW security of the KEM solely because the first public key in

111

3 Optimally Secure Ratcheting in Two-Party Settings

A’s state is only freshly generated as output of the random oracle but
never updated.

Game 5.4 – Keys established by B out of sync The abortion
rule of game G5.4 of SRKE resembles the one of game G5.2 of URKE.
For aborting the game, Amust not be exposed for the last state in sync
between A and B, and B’s oldest cached secret key at receiving the
ciphertext drifting him out of sync must not have been exposed, either.
These conditions imply that an external random oracle query to the
entry that defines the last common state values (e.g., k.m) would
cause an abortion of G5.1. Consequently, the MAC key was neither
exposed by A, nor by B, nor provided to the adversary via an external
random oracle query. Manipulating a ciphertext and delivering it to B
without erasing B’s state implies that the adversary forged the MAC
tag. Hence, the abortion of G5.4 can be reduced to winning the SUF
game with respect to the MAC:

AdvG5.3,G5.4(D) ≤ Advsuf
M (BM)

To conclude the proof, it is necessary to show that the abortions
reduce all random oracle queries by the adversary that output chal-
lengeable keys to one of the employed hardness assumptions. Equiv-
alently, we show that the game aborts for the queries that do not
output known (and traceable) keys.
According to the transformability between the index scheme in the

KINDR game and the index scheme for the simulation, the union of
A’s adversarially known keys KNA and the union of exposed secret
key indexes XSK at an exposure of B are equivalent (see Figure 3.18
lines 40, 42, 43). Since G5.1 aborts for all keys established by A in
sync for which in is not exposed, no challengeable key of A in sync can
be obtained from the random oracle. Please note that if in ∈ XSK
holds, it is implied that ∀1 ≤ j ≤ n : ij ∈ XSK because all secret keys
are stored in the same state of B.

When drifting out of sync, the KINDR game does not increase
epochs of the respective party anymore. Consequently impersonations

112

3.12 Proof of BRKE

cause all future keys to be known by the adversary. Equivalently the
proof does not embed challenges into the random oracle if B was
impersonated towards A and does not consider a valid MAC for a ma-
nipulated ciphertext to B as a forgery if A was exposed right before. A
forgery is not regarded as such if the oldest epoch in B’s state was ex-
posed, either—which is equivalent to the absence of epoch increasing
when drifting out of sync.
Since the abortions of games G5.1 −G5.3 cover all possible internal

random oracle queries of A and G5.4 excludes the establishment of
challengeable keys by B, the adversary cannot derive a challengeable
key without letting the game abort. Hence the advantage in winning
the game G5.4 is 0.

AdvG5.4(A) = 0

Proof result

Summing up the loss due to the game hops described above, provides
us with the advantage of an adversary in winning the SRKE KINDR
game depending on the advantages of adversaries BK, BS, and BM:

Advkind
R (A) ≤ 3Advkuow

K (BK) +RAdvsuf
S (BS) + Advsuf

M (BM) + qH + 2
|K|

3.12 Proof of BRKE
We give proof for the security of our generic BRKE construction in
Figure 3.13. This proof is described below and depicted in Figure 3.20.
Our proof first reduces the creation of signature forgeries to the secu-
rity of the used signature scheme. Then we show that the adversary
cannot win the BRKE KINDBR game without breaking the underlying
SRKE scheme’s security.

Game 1 – Excluding signature forgeries

Similarly to the SRKE proof, game G1 aborts on signature forgeries
that drift the parties’ states out of sync. This event can be reduced

113

3 Optimally Secure Ratcheting in Two-Party Settings

to winning the SUF game against the one-time signature scheme.
The major difference between game G1 in SRKE and BRKE lies

within the abortion conditions: In SRKE, impersonations cannot en-
tail forgeries by definition because the respective signing key is leaked
to the adversary during the exposure of the impersonated party. The
signing key in BRKE can never be exposed to the adversary because
it is only used temporarily during the computations in the send algo-
rithm. As such, in BRKE also a ciphertext received as impersonation
can contain a signature forgery.
If the adversary injects a manipulated ciphertext that causes the re-

ceiving party to drift out of sync, that contains the original verification
key, and that is valid with respect to the signature verification, game
G1 aborts. If the respective sender was out of sync before (i.e., if the
adversary already injected a manipulated ciphertext in the opposite
communication direction before), then this ciphertext does not cause
the parties to drift out of sync, but only propagates the asynchronicity.
This latter case is not considered in the detection of signature forg-
eries because the underlying SRKE schemes already handle the receipt
of manipulated SRKE ciphertexts and the propagation of out-of-sync
states.
An adversary distinguishing between the original KINDBR game

and game G1 can be used to win the SUF game against the signature
scheme. The reduction replaces the singing and verification algorithms
with the SUF game’s oracles for the ciphertext that entails the first
forgery. Hence, the advantage in distinguishing between KINDBR and
G1 can be bounded by:

Advkind,G1
BR (D) ≤ Advsuf

S (BS)

After game G1 the following invariant holds: If a manipulated ci-
phertext is received by one of the parties, then either this party’s state
is erased (due to an invalid signature), or both SRKE receiver states
are affected by the manipulation (due to an impersonation)18. The
18Note that a ciphertext collision in a BRKE ciphertext (prevented by random

‘collision’ keys in our SRKE scheme from Figure 3.10) can directly be used as

114

3.12 Proof of BRKE

latter statement is true because the adversary must use an own sign-
ing key pair for the ciphertext’s signature of which the verification key
is used as associated data for both SRKE receive algorithms.

Game 2,3 – Key indistinguishability of SRKE

In games G2, G3 we use the key indistinguishability of the underlying
SRKE schemes to show that the adversary, breaking BRKE, can be
used to break one of the employed SRKE instances.
We replace the BRKE challenge keys by random elements from the

key space. In game G2 we do this for keys established from A to B,
then in game G3 for the counter direction accordingly. By matching
the winning conditions of an adversary in game G2 (and G3) with the
winning conditions in the SRKE KINDSR game, one can see that these
conditions are identical. Please note that, due to the first game hop
to game G1, manipulations of ciphertexts always affect both SRKE
ciphertexts.
As a result, the advantage of an adversary, distinguishing between

G1 and G2 and between G2 and G3, respectively, can be bounded by:

AdvG1,G2
BR (D) ≤ Advkind

SR (BSR), AdvG2,G3
BR (D) ≤ Advkind

SR (BSR)

Since all challenged keys are sampled uniformly at random from the
key space in game G3, the adversary cannot derive information on bit
b and consequently the advantage of an adversary is 0:

AdvG3
BR(A) = 0

Proof result

Summing up the loss due to the game hops described above, provides
us with the advantage of an adversary in winning the BRKE KINDBR
game depending on the advantages of adversaries BSR and BS:

Advkind
BR (A) ≤ 2Advkind

SR (BSR) + Advsuf
S (BS)

a ciphertext collision in the underlying SRKE ciphertexts to break KINDSR of
the respective (generic) SRKE scheme. Hence, such collisions do not need to
be considered for (and handled by) our BRKE scheme.

115

3 Optimally Secure Ratcheting in Two-Party Settings

Simulation SbBR(A)
00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E |<u ← 0; E>|

u ← 0
04 ACu[·]← ⊥; isu ← T
05 Ku[·]← ⊥; XPu ← ∅
06 KNu ← ∅; CHu ← ∅
07 oosu ←∞; forgeu ← F G1
08 VKu[·]← ⊥ G1
09 (stA,S , stB,R)←$ initSR
10 (stB,S , stA,R)←$ initSR
11 stA ← (stA,S , stA,R)
12 stB ← (stB,S , stB,R)
13 b′ ←$ A
14 For u ∈ {A,B}:
15 Require KNu ∩ CHu = ∅
16 Stop with b′

Oracle Snd(u, ad)
17 Require stu 6= ⊥
18 (st1, st2)← stu
19 (sgk, vfk)←$ genS; ad q← vfk
20 VKu[su]← vfk G1
21 (st1, k.o, c1)←$ sndA(st1, ad)
22 (st2, c2)←$ sndB(st2, ad)
23 σ ←$ sgn(sgk, c1 ‖ c2)
24 c← vfk ‖ c1 ‖ c2 ‖σ
25 stu ← (st1, st2)
26 If isu:
27 ACu[su]← (ad, c)
28 EPu[su]← eu
29 E>|

u ← E>|
u + 1

30 Ku[S, eu, su]← k.o
31 su ← su + 1
32 Return c

Oracle Reveal(u, i)
as in URKE/SRKE (Fig. 3.6)

Oracle Rcv(u, ad, c)
33 Require stu 6= ⊥
34 If isu ∧ACū[ru] 6= (ad, c):
35 isu ← F
36 oosu ← su G1
37 If oosū > ru: forgeu ← T G1
38 If ru ∈ XPū:
39 KNu

∪← {S} × N× [su, ...]
40 KNu

∪← {R} × N× [ru, ...]
41 If isu:
42 E |<u ← EPū[ru]
43 eu ← eu + 1
44 (st1, st2)← stu
45 vfk ‖ c1 ‖ c2 ‖σ ← c; ad q← vfk
46 Require vfyS(vfk, c1 ‖ c2, σ)
47 If forgeu ∧ vfk = VK ū[ru]: Abort G1
48 st1 ← rcvA(st1, ad, c2)
49 Require st1 6= ⊥
50 (st2, k.o)← rcvB(st2, ad, c1)
51 Require st2 6= ⊥
52 stu ← (st1, st2)
53 If stu = ⊥: Return ⊥
54 If isu: k.o ← �
55 Ku[R,E |<u , ru]← k.o
56 ru ← ru + 1
57 Return

Oracle Expose(u)
58 KNu

∪← {R} × [E |<u ..E>|
u]× [ru, ...]

59 If isu:
60 XPu ∪← {su}
61 KNū

∪← {S} × [E |<u ..E>|
u]× [ru, ...]

62 Return stu
Oracle Challenge(u, i)
63 Require Ku[i] ∈ K
64 k ← b ? Ku[i] : $(K)
65 If u = A ∧ i ∈ {S} × N2

∨u = B ∧ i ∈ {R} × N2: G2
66 k ←$ K G2
67 If u = B ∧ i ∈ {S} × N2

∨u = A ∧ i ∈ {R} × N2: G3
68 k ←$ K G3
69 Ku[i]← �
70 CHu

∪← {i}
71 Return k

Figure 3.20: Proof of BRKE scheme from Figure 3.13 in BRKE KINDBR game
from Figure 3.12.

116

3.13 Modeling ratcheted key exchange

3.13 Modeling ratcheted key exchange

A common criticism in the key exchange community is that many con-
structions are proposed with an own model that is then only used once
to proof this specific construction’s security. The resulting problem of
different models for many schemes of similar nature is that compara-
bility and comprehensibility of schemes is hampered significantly. We
anticipate this by comparing our approach to model security of ratch-
eted key exchange with prior work on ratcheting and on key agreement
in general. Essentially we conclude that our model is in line with prior
strategies and with prior notation. Hence, we believe that at our def-
initions are integrated into the literature. However, ratcheted key
exchange is only loosely related to classic key agreement and, there-
fore, proposing our new models was necessary to meaningfully consider
ratcheting.
A security model (for key exchange) mainly consists of three com-

ponents: 1) communication model with partnering definition, 2) the
adversary’s ability to obtain information on the communicating par-
ties’ secrets, and 3) a winning condition for the security game defined
by excluding trivial attacks.
In our definitions (see figures 3.6, 3.9, and 3.12) we combine all

three parts of the model in one figure, respectively. The communica-
tion model is implicitly given by the oracles Snd,Rcv. The partnering
is defined via the is bit (please note that the definition is related to
matching conversations). The remaining oracles (Reveal,Expose) de-
fine the adversary’s ability to obtain secrets from the communicating
parties. Finally, the challenge oracle together with the described ex-
cluded trivial attacks define the winning conditions for the adversary.
Note that excluding trivial attacks within the oracles is in principal
equivalent to defining a freshness condition separately. By combining
all components of the model in a single compact game definition, the
dependencies among them become visible. This especially plays a role
in our model since, in contrast to classic key agreement models, our
model allows and is based on concurrency in communication (which
e.g., influences trivial attacks).

117

3 Optimally Secure Ratcheting in Two-Party Settings

Please note that there is an important difference between ratcheted
key exchange and classic key agreement: while key agreement proto-
cols aim to provide the initialization of a communication, ratcheted
key exchange serves as a primitive that provides an already initialized
session with continuously updated session keys. Both worlds (classic
key agreement for initialization and ratcheted key exchange for serv-
ing an initialized session) can be composed by using the key, derived
from the classic key agreement, to initialize the local session states for
the ratcheted key exchange. As such, ratcheting sessions are indepen-
dent of each other as long as the initializing key agreement provides
independent session keys to independent sessions. Hence, our model
does not need to consider an environment with multiple users (and
multiple sessions each). Consequently users and long-term keys do
not play a role in ratcheted key exchange.19

Both, by defining the security model within one compact game def-
inition, and by disregarding the explicit communication initialization,
we are in line with the approach of Bellare et al. [BSJ+17].
In contrast, for example Cohn-Gordon et al. [CCD+17] provide a

model that presents the three previously named components (com-
munication model, exposure of secrets, and winning condition) step
by step. The significant disadvantage of this approach is that readers
must compile these components themselves ad hoc in order to under-
stand the overall security definition (and its guarantees). Besides, we
believe that the choice of notation is a matter of taste and in our case,
one compact game description seems more appropriate.
As described before, our technique for deriving a model for ratch-

eted key exchange differs from previous work on ratcheting crucially
in our natural consideration of trivial attacks and the resulting un-
ambiguous, objective, strong security definition. One could derive
weaker notions of security by restricting the communication model or
the adversary’s access to the exposure oracles. These weaker notions
could be comparable to earlier modeling approaches and would allow

19Please note that the construction of Bellare et al. [BSJ+17] does not suffice our
model because it employs a long-term key for Bob.

118

3.13 Modeling ratcheted key exchange

for more efficient protocols.

119

4
Necessity of Strong Building
Blocks for Optimally Secure

Ratcheting

Contents

4.1 Introduction . 122
4.2 Sufficient Security for Key-Updatable KEM 130
4.3 Unidirectional RKE under Randomness Manipulation 138
4.4 kuKEM* to URKE . 144
4.5 URKE to kuKEM* . 149
4.6 Discussion . 161

In our security notions from Chapter 3 we study ratcheting as a prim-
itive from a theoretic point of view, pursuing the strongest security
of ratcheting one can hope for. To build accordingly secure construc-
tions we utilize strong, yet inefficient key-updatable primitives—based
on hierarchical identity based encryption (HIBE). Related work that
followed a comparable definitional approach [JS18a] equally relied for
their constructions on these primitives. As neither we nor related
works formally justified utilizing these building blocks so far, we an-
swer the yet open question in this chapter under which conditions
their use is actually necessary.

We revisit our strong notions of ratcheted key exchange (RKE)
from Chapter 3, and propose a reasonably extended, slightly stronger
security definition. In this security definition, both the exposure of
the communicating parties’ local states and the adversary’s ability to
attack the executions’ randomness are considered. While these two

121

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

attacks were partially considered in previous work, we are the first to
unify them cleanly in a natural game-based notion.
Due to slight (but meaningful) changes towards our notion from

the previous chapter to regard attacks against randomness, we are
ultimately able to show that, in order to fulfill strong security for RKE,
public key cryptography with (independently) updatable key pairs
is a necessary building block. Surprisingly, this implication already
holds for the restricted unidirectional RKE case, which was previously
instantiated with only standard public key cryptography.

Contributions by the Author This entire chapter has almost ex-
clusively been contributed by the author of this thesis. The full ver-
sion [BRV20b] of the paper that has been published in the proceedings
of ASIACRYPT 2020 [BRV20a] contains, in addition to the contents
of this chapter, a formal proof of Theorem 4. This proof can be
considered a (slight) adaption of the one presented in Section 3.10.
Section 4.5 was jointly contributed by the author of this thesis and a
co-author from [BRV20a].

4.1 Introduction

In addition to exposures of locally stored state secrets (which is our
focus in Chapter 3), randomness for generating new secrets is often
also considered vulnerable. This is motivated by numerous attacks
in practice against randomness sources (e.g., [HDWH12]), random-
ness generators (e.g., [YRS+09, CNE+14]), or exposures of random
coins (e.g., [RS09]). Most theoretic approaches try to model this
threat by allowing an adversary to reveal attacked random coins of
a protocol execution (as it was also conducted in related work on
ratcheting). This, however, assumes that the attacked protocol hon-
estly and uniformly samples its random coins, either from a high-
entropy source or using a random oracle, and that these coins are only
afterwards leaked to the attacker. In contrast, practically relevant
attacks against bad randomness generators or low-entropy sources

122

4.1 Introduction

(e.g., [HDWH12, YRS+09, CNE+14]) change the distribution from
which random coins are sampled. Consequently, this threat is only
covered by a security model if considered adversaries cannot only ob-
tain and reveal but also influence the execution’s (distribution of)
random coins. Thus, it is important to consider randomness manip-
ulation instead of reveal, if attacks against randomness are regarded
practically relevant.
The overall goal of ratcheting protocols is to reduce the effect of

any such non-permanent and/or non-fatal attack to a minimum. For
example, an ongoing communication under a non-fatal attack should
become secure as soon as the adversary ends this attack or counter-
measures become effective. Examples for countermeasures are replac-
ing bad randomness generators via software updates, eliminating state
exposing viruses, etc. Motivated by this, most widely used messag-
ing apps are equipped with mechanisms to regularly update the local
secrets such that only a short time frame of communication is com-
promised if an adversary was successful due to obtaining local secrets
and/or attacking random coins.

Generic Treatment of Ratcheting as a Primitive. In the
following we shortly recall, introduce, and review previous modeling
approaches for strongly secure (as opposed to purely practical and
relatively weakly secure) ratcheting. We thereby abstractly highlight
modeling choices that crucially affect the constructions, secure ac-
cording to these models respectively. Specifically, we indicate why
some models can be instantiated with only public key cryptography
(PKC)—bypassing our implication result—and others cannot. In Ta-
ble 4.1 we summarize this overview.
The initial generic work that considers ratcheted key exchange (RKE)

as a primitive and defines its syntax, correctness, and security in a yet
impractical variant is by Bellare et al. [BSJ+17]. Abstractly, their
concept of unidirectional ratcheted key exchange (URKE), depicted
in the right part of Figure 4.1 and already introduced in Section 3.3,
consist of an initialization that provides two session participants A
and B with a state that can then be used by them to repeatedly

123

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

K
ey
-u
pd

at
ab

le
K
EM

*
gen$

pk

pk

sk
ad adup up

pk sk
ad adup up

pk sk
c

k kenc$ dec U
ni
di
re
ct
io
na

lR
K
E

init$

stA stB
cad ad

k ksnd$ rcv
stA stB

cad ad
k ksnd$ rcv

stA stB
cad ad

k ksnd$ rcv

Figure 4.1: Conceptual depiction of kuKEM∗ and unidirectional RKE. Note the
(crucial) difference towards kuKEM (without asterisk), conceptually shown in Fig-
ure 3.2: encapsulation and decapsulation of kuKEM∗ output and may alter the
respective input part of the key pair. ‘$’ in the upper index of an algorithm name
denotes that the algorithm runs probabilistically and ad is associated data.

compute new keys in this session (e.g., for use in higher level proto-
cols). We recall that URKE restricts the communication model such
that A is allowed to compute new keys with her state and accord-
ingly send ciphertexts to B who can then compute (the same) keys
with his state. During these key computations, A’s and B’s states are
updated, respectively, to minimize the effect of state exposures. We
emphasize that B can only comprehend key computations from A, on
receipt of a ciphertext, but cannot actively initiate the computation
of new keys. Beyond this restriction of the communication model,
the security definition by Bellare et al. only allows the adversary to
expose A’s temporary local state secrets, while B’s state cannot be ex-
posed (which in turn requires no forward-secrecy with respect to state
updates by B). Following Bellare et al., we propose in Chapter 3 a
revised security definition of unidirectional RKE (thereby we also al-
low the exposure of B’s state) and extend the communication model
to define syntax, correctness, and security of sesquidirectional RKE
(SRKE: additionally allows B to only send special update ciphertexts
to A that do not trigger a new key computation but help him to re-
cover from state exposures) and bidirectional RKE (BRKE: defines

124

4.1 Introduction

A and B to participate equivalently in the communication). With a
similar instantiation, Jaeger and Stepanovs [JS18a] define security for
bidirectional channels under state exposures and randomness reveal.
All of the above mentioned approaches define security optimally

with respect to their syntax definition and the adversary’s access to the
primitive execution (modeled via oracles in the security game). This
is reached by declaring secrets insecure iff the adversary conducted
an unpreventable/trivial attack against them (i.e., a successful attack
that no instantiation can prevent). Consequently, fixing syntax and
oracle definitions, no stronger security definitions exist.

Relaxed Security Notions. Subsequent to these strongly secure
ratcheting notions, multiple weaker formal definitions for ratcheting
were proposed that consider special properties such as strong explicit
authentication [DV19], out of order receipt of ciphertexts [ACD19], or
primarily target on allowing efficient instantiations [JMM19, CDV19].
While these works are syntactically similar, we shortly sketch their

different relaxations regarding security—making their security notions
sub-optimal. Durak and Vaudenay [DV19] and Caforio et al. [CDV19]
forbid the adversary to perform impersonation attacks against the
communication between A and B during the establishment of a secure
key. Thus, they do not require recovery from state exposures—which
are a part of impersonation attacks—in all possible cases, which we
denote as ‘partial recovery’ (see Table 4.1). Furthermore, both works
neglect bad randomness as an attack vector. In the security experi-
ments by Jost et al. [JMM19] and Alwen et al. [ACD19] constructions
can delay the recovery from attacks longer than necessary (Jost et al.
therefore temporarily forbid the exposure of the local state). Addi-
tionally, they do not require the participants’ states to become incom-
patible (immediately) on active attacks against the communication.

Instantiations of Ratcheting. Interestingly, both mentioned
unidirectional RKE instantiations that were defined to depict opti-

1‘Unnecessary’ refers to restrictions beyond those that are immediately implied
by optimal security definitions (that only restrict the adversary with respect to
unpreventable/trivial attacks).

125

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

(a) Interaction (b) State Exposure (c) Bad Randomness (d) Recovery
C+ [CCD+17] ↔ Always allowed Reveal Delayed
B+ [BSJ+17] → Only allowed for A Reveal Immediate
Chapter 3 → Always allowed Not considered Immediate
published in 7→ Always allowed Not considered Immediate
[PR18b, PR18a] ↔ Always allowed Not considered Immediate
JS [JS18a] ↔ Always allowed Reveal Immediate
DV [DV19] ↔ Always allowed Not considered Partial
JMM [JMM19] → Partially restricted Reveal (Immediate)

7→ Partially restricted Reveal (Immediate)
↔ Partially restricted Reveal (Immediate)

ACD [ACD19] ↔ Always allowed Manipulation Delayed
CDV [CDV19] ↔ Always allowed Not considered Delayed
This work → Always allowed Manipulation Immediate

Table 4.1: Differences in security notions of ratcheting regarding (a) uni- (→),
sesqui- (7→), and bidirectional (↔) interaction between A and B, (b) when the
adversary is allowed to expose A’s and B’s state (or when this is unnecessarily
restricted), (c) the adversary’s ability to reveal or manipulate algorithm invoca-
tions’ random coins, and (d) how soon and how complete recovery from these two
attacks into a secure state is required of secure constructions (or if unnecessary
delays or exceptions for recovery are permitted).1 Recovery from attacks required
by Jost et al. [JMM19] is immediate in so far as their restrictions of state ex-
posures introduce delays implicitly. Gray marked cells indicate the reason (i.e.,
relaxations in security) why respective instantiations can rely on standard PKC
only (circumventing our implication result). Rows without gray marked cells have
no construction based on pure PKC.

mal security (i.e., our construction from Section 3.4 and [BSJ+17]) as
well as bidirectional real-world examples such as the Signal protocol
(analyzed in [CCD+17]), and instantiations of the above named re-
laxed security notions [DV19, JMM19, ACD19, CDV19] only rely on
standard PKC (cf. rows in Table 4.1 with gray cells).
In contrast, both mentioned optimally secure bidirectional ratchet-

ing variants (i.e., sesquidirectional and bidirectional RKE from sec-
tions 3.6 and 3.9, and bidirectional strongly secure channel [JS18a])
are based on key-updatable public key encryption, which can be built
from hierarchical identity based encryption (HIBE). We recall the
intuitive concept, formally already introduced in Section 3.2: key-
updatable public key encryption is standard public key encryption
that additionally allows to update public key and secret key indepen-
dently with respect to some associated data (a conceptual depiction of

126

4.1 Introduction

Bad randomness

HIB-KEMOW-ID-CCA

kuKEM∗KUOWR

KEMIND-1-CCA

kuKEMKUOW

URKEKINDR

URKEKIND

SRKEKIND BRKEKIND

BRKEKINDR

Xx Yy
iff (x-secure X
⇒ y-secure Y)

(Sec.
4.2)

(Sec. 3.2)

Sec. 4.4
ROM

Sec. 4.5
(Sec. 4.4)

ROM

ROM
Sec. 3.11

Sec. 3.10

Sec. 3.12

Figure 4.2: The contributions of this chapter (bold arrows) and their connec-
tion to results from Chapter 3 (thin arrows) involving RKE (uni-, sesqui-, and
bidirectional) and KEM (standard, hierarchical-identity-based, and key-updatable)
primitives. ROM indicates that the proof holds in the random oracle model.
kuKEM∗KUOWR ⇒ROM SRKEKIND is not formally proven in this chapter, but we
point out that the proof of kuKEMKUOW ⇒ROM SRKEKIND from Section 3.11 can
be rewound. Gray dashed connections indicate trivial implications (due to strictly
weaker syntax or security definitions).

this is on the left side of Figure 4.1). Thereby an updated secret key
cannot be used to decrypt ciphertexts that were encrypted to previ-
ous (or different) versions of this secret key, where versions are defined
over the associated data used for updates.

Necessity for Strong Building Blocks. Natural questions that
arise from this line of work are, whether and under which conditions
such strong (HIBE-like) building blocks are not only sufficient but also
necessary to instantiate the strong security of (bidirectional) RKE.
In order to answer these questions, we build key-updatable public
key cryptography from ratcheted key exchange. Consequently we af-
firm the necessity and provide (sufficient) conditions for relying on
these strong building blocks. We therefore minimally adjust the syn-
tax of key-updatable key encapsulation mechanism (kuKEM) from
Section 3.2 and consider the manipulation of algorithm invocations’
random coins in our security definitions of kuKEM and RKE.2
While, despite these changes of syntax and security towards prior

definitions, we prove that RKE can still be built from kuKEM, we
2Recall that randomness manipulation was not considered in a security definition
that aimed for optimal security in the literature of ratcheting yet (cf. Table 4.1).

127

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

also prove that kuKEM can be built from RKE (see Figure 4.2). As
a result we show that:

• kuKEM∗ (with one-way security under manipulation of random-
ness) ⇒ROM Unidirectional RKE (with key indistinguishability
under manipulation of randomness),

• Unidirectional RKE (with key indistinguishability under manip-
ulation of randomness) ⇒ kuKEM∗ (with one-way security un-
der manipulation of randomness).

The asterisk at kuKEM∗ indicates the minimal adjustment to the
kuKEM syntax definition from Section 3.2.3
Given the security notions established in honest randomness setting

and their connections to each other, one would also expect Group
RKE ⇒ Bidirectional RKE ⇒ Sesquidirectional RKE ⇒ Unidirec-
tional RKE to follow. Hence, our results indicate that stronger RKE
variants also likely require building blocks as hard as kuKEM∗. Fur-
thermore, we can show that our results from Section 3.6 remain valid
under the changed notion of kuKEM∗: One-way security under ma-
nipulation of randomness of kuKEM∗ ⇒ROM Key indistinguishability
of sesquidirectional RKE.

Interestingly, these results induce that (when considering strong
security) ratcheted key exchange requires these strong (HIBE-like)
building blocks not only for bidirectional communication settings, but
already for the unidirectional case. Both mentioned previous unidi-
rectional RKE schemes can bypass our implication because they for-
bid exposures of B’s state [BSJ+17] or assume secure randomness as
in Section 3.3 (see Table 4.1). We describe attacks against each of
both constructions in our URKE security definition from this chapter
in Section 4.4.1. Since the mentioned relaxed security definitions of
ratcheting [CCD+17, DV19, JMM19, ACD19, CDV19] restrict the ad-
versary more than necessary in exposing states, solving (potentially
valid) embedded game challenges, manipulating the communication

3For the kuKEM∗ we consider one-way security as it suffices to achieve strong
security for RKE. It is obvious that the same results hold for key indistinguisha-
bility.

128

4.1 Introduction

between the session participants, or attacking invocations’ random
coins (and thus violate either of our security definition’s conditions),
it remains feasible to instantiate them with standard public key prim-
itives as well (see Table 4.1). Although our analysis is partially mo-
tivated by the use of kuKEM in the constructions from Chapter 3
and in [JS18a], we do not ultimately answer whether these particular
constructions necessarily relied on it. Rather we provide a clean set
of conditions under which RKE and kuKEM clearly imply each other
as we do not consider the justification of previous constructions but
a clear relation for future work important. (However, we extensively
discuss whether and how our approach can be extended accordingly
in Section 4.6.)
Thus, we show that sufficient conditions for necessarily relying on

kuKEM as a building block of RKE are: (a) unrestricted exposure
of both parties’ local states, (b) consideration of attacks against al-
gorithm invocations’ random coins, and (c) required immediate re-
covery from these two attacks into a secure state by the security
definition (i.e., the adversary is only restricted with respect to un-
preventable/trivial attacks).4

Contributions. The contributions of this chapter can be summa-
rized as follows:

• We are the first who systematically define optimal security of
key-updatable KEM and unidirectional RKE under random-
ness manipulation (in sections 4.2 and 4.3) and thereby con-
sider this practical threat in addition to state exposures in an
instantiation-independent notion of RKE. Thereby we substan-
tially enhance the respective models from Chapter 3.

• In Section 4.4, we construct unidirectional RKE generically from
a kuKEM∗ to show that the latter suffices as a building block

4Note that there may exist further sets of sufficient conditions for relying on
kuKEMs since, for example, sesqui- and bidirectional RKE from sections 3.5
and 3.8 violate condition (b) but base on kuKEMs as well. We refer the reader
to Section 3.7 for a detailed explanation of why these scheme presumably also
must rely on a kuKEM. We leave the identification of further sets of conditions
as future work.

129

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

for the former under manipulation of randomness.
• To show that kuKEM∗ is not only sufficient but also necessary to

build unidirectional RKE (under randomness manipulation), we
provide a construction of kuKEM∗ from a generic unidirectional
RKE scheme in Section 4.5.

With our results we distill the core building block of strongly se-
cure ratcheted key exchange down to its syntax and security defini-
tion. This allows further research to be directed towards instantiating
kuKEM∗ schemes that are more familiar and easier in terms of se-
curity requirements, rather than attempting to construct seemingly
more complex RKE primitives.5 Simultaneously, our results indicate
the cryptographic hardness of ratcheted key exchange and thereby
help to systematize and comprehend the security definitions and dif-
ferent dimensions of ratcheting in the literature. As a consequence,
our results contribute to a fact-based trade-off between security and
efficiency for RKE by providing requirements for relying on heavy
building blocks and thereby revealing respective bypasses.

4.2 Sufficient Security for Key-Updatable
KEM

A key-updatable key encapsulation mechanism (kuKEM) is a key en-
capsulation mechanism that provides update algorithms for public key
and secret key with respect to some associated data respectively. In
order to allow for our equivalence result, we minimally adjust the orig-

5For example, the bidirectional channel construction in the proceedings version
of [JS18a] is not secure according to the security definition (but a corrected ver-
sion is published as [JS18b]), in the acknowledgments of [PR18a] (i.e., the paper
on which Chapter 3 bases) it is mentioned that an early submitted version of
our construction was also flawed, and for an earlier version of [DV19] (avail-
able as [DV18]) we detected during our work (and informed the authors) that
the construction was insecure under bad randomness such that the updated
proceedings version disregards attacks against randomness entirely. Finally, we
detected and reported that the construction of HkuPke in [JMM19] is not even
correct.

130

4.2 Sufficient Security for Key-Updatable KEM

inal kuKEM notion from Section 3.2 and call it kuKEM∗. The small,
yet crucial changes comprise allowed updates of public and secret key
during encapsulation and decapsulation (in our syntax definition) as
well as the adversary’s ability to manipulate utilized randomness of
encapsulations (in our security definition). In Section 4.5 the ratio-
nales behind these changes are clarified. In order to provide a coherent
definition, we not only describe alterations towards Section 3.2 but de-
fine kuKEM∗ entirely (as we consider our changes to be a significant
contribution and believe that this strengthens comprehensibility).

Syntax A kuKEM∗ for a space of encapsulated keys K is a quadru-
ple K = (genK, up, enc,dec) of algorithms together with spaces of pub-
lic keys PK and secret keys SK, a space of associated data AD for
updating the keys, a ciphertext space C (with AD ∩ C = ∅). Fur-
thermore we define R as the space of random coins used during the
encapsulation. In contrast to the syntax of kuKEM in Section 3.2, the
encapsulation algorithm of kuKEM∗ also outputs a (potentially mod-
ified version of the input) public key, and decapsulation algorithm
accordingly outputs a (potentially modified version of the input) se-
cret key—as a result, the kuKEM∗ is stateful (where the public key is
a public state).6 A shortcut notation for kuKEM∗ algorithms is

genK →$ PK × SK PK ×R → enc → PK×K × C or
PK ×AD → up → PK PK → enc →$ PK ×K × C
SK ×AD → up → SK SK × C → dec → (SK ×K) ∪ {(⊥,⊥)}

Correctness The correctness for kuKEM∗ is (for simplicity) defined
through game FUNCK (see Figure 4.3), in which an adversary A can
query encapsulation, decapsulation, and update oracles. The adver-
sary (against correctness) wins if different keys are computed during
decapsulation and the corresponding encapsulation even though com-

6As kuKEM∗ naturally provides no security for encapsulated keys if the adver-
sary can manipulate the randomness for genK already, we only consider the
manipulation of random coins for enc.

131

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

patible key updates were conducted and ciphertexts from encapsula-
tions were directly forwarded to the decapsulation oracle.
A kuKEM∗ scheme K is correct if the probability of winning game

FUNCK from Figure 4.3 is Pr[FUNCK(A)→ 1] = 0 for every A.

Game FUNCK(A)
00 (pk, sk)←$ genK
01 K[·]← ⊥
02 trs ← ε; trr ← ε
03 Invoke A
04 Stop with 0

Oracle UpS(ad)
05 Require ad ∈ AD
06 pk ← up(pk, ad)
07 trs q← ad
08 Return

Oracle UpR(ad)
09 Require ad ∈ AD
10 sk ← up(sk, ad)
11 trr q← ad
12 Return

Oracle Enc()
13 (pk, k, c)←$ enc(pk)
14 trs q← c
15 K[trs]← k
16 Return (pk, c)

Oracle Dec(c)
17 Require c ∈ C
18 (sk, k)← dec(sk, c)
19 trr q← c
20 If trr � trs:
21 Reward k 6= K[trr]
22 Return

Figure 4.3: The correctness notion of kuKEM∗ captured through game FUNC.

Security Here we describe KUOWR security of kuKEM∗ as for-
mally depicted in Figure 4.4. KUOWR defines one-way security of
kuKEM∗ under randomness manipulation in a multi-instance/multi-
challenge setting.
Intuitively, the KUOWR game requires that a secret key can only

be used for decapsulation of a ciphertext if prior to this decapsulation
all updates of this secret key and all decapsulations with this secret
key were consistent with the updates of and encapsulations with the
respective public key. This is reflected by using the transcript (of
public key updates and encapsulations or secret key updates and de-
capsulations) as a reference to encapsulated ‘challenge keys’ and secret
keys.
In Figure 4.4 we denote changes with respect to KUOW security

from Figure 3.3 by adding ‘·’ at the beginning of lines.
In order to let the adversary play with the kuKEM∗’s algorithms,

the game provides oracles Gen, UpS , UpR, Enc, and Dec. Thereby
instances (i.e., key pairs) can be generated via oracle Gen and are

132

4.2 Sufficient Security for Key-Updatable KEM

referenced in the remaining oracles by a counter that refers to when
the respective instance was generated.

Game KUOWRK(A)
00 n← 0
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (pkn, skn)←$ genK
05 CKn[·]← ⊥; XPn ← ∅
06 trsn ← ε; trrn ← ε
07 SKn[·]← ⊥
08 SKn[trrn]← skn
09 Return pkn
Oracle UpS(i, ad)
10 Require 1 ≤ i ≤ n ∧ ad ∈ AD
11 pki ← up(pki, ad)
12 trsi q← ad
13 Return pki
Oracle Enc(i, rc)
14 Require 1 ≤ i ≤ n
15 · Require rc ∈ R ∪ {ε}
16 · If rc = ε: mr ← F; rc ←$ R
17 · Else: mr ← T
18 · (pki, k, c)← enc(pki; rc)
19 · trsi q← c
20 · If mr = F: CKi[trsi]← k
21 · Return (pki, c)

Oracle Solve(i, tr , k)
22 Require 1 ≤ i ≤ n
23 Require tr /∈ XPi
24 Require CKi[tr] 6= ⊥
25 Reward k = CKi[tr]
26 Return

Oracle UpR(i, ad)
27 Require 1 ≤ i ≤ n ∧ ad ∈ AD
28 ski ← up(ski, ad)
29 trr i q← ad
30 SKi[trr i]← ski
31 Return

Oracle Dec(i, c)
32 Require 1 ≤ i ≤ n ∧ c ∈ C
33 · (ski, k)← dec(ski, c)
34 · trr i q← c
35 · SKi[trr i]← ski
36 · If CKi[trr i] 6= ⊥:
37 · Return
38 · Return k

Oracle Expose(i, tr)
39 Require 1 ≤ i ≤ n
40 · Require SKi[tr] ∈ SK
41 · XPi ∪← {tr∗ ∈ (AD ∪ C)∗ :

tr ≺ tr∗}
42 Return SKi[tr]

Figure 4.4: Security experiment KUOWR, modeling one-way security of kuKEM∗
in a multi-instance/multi-challenge setting under randomness manipulation. Lines
of code tagged with ‘·’ are (substantially) modified with respect to KUOW security
from Figure 3.3. Line 41 is a shortcut notion that can be implemented efficiently.
CK: challenge keys, XP: exposed secret keys, trs, trr : transcripts.

For encapsulation via oracle Enc, the adversary can either choose
the invocation’s random coins by setting rc to some value that is not
the empty string ε or let the encapsulation be called on fresh random-
ness by setting rc = ε (line 16). In the former case, the adversary

133

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

trivially knows the encapsulated key. Thus, only when called with
fresh randomness, the encapsulated key is marked as a challenge key
in array CK (line 20).
The variables CK, SK, and XP (the latter two are explained below)

are indexed via the transcript of operations on the respective key pair
part. As public keys and secret keys can uniquely be referenced via the
associated data under which they are updated and via ciphertexts that
have been encapsulated or decapsulated by them, the concatenation
of these values (i.e., sent or received transcripts trs, trr) are used as
references to them in the KUOWR game.
On decapsulation of a key that is not marked as a challenge, the

respective key is output to the adversary. Challenge keys are of course
not provided to the adversary as thereby the challenge would be triv-
ially solved (line 36).
Via oracle Expose, the adversary can obtain a secret key of specified

instance i that results from an operation referenced by transcript tr .
As described above, the transcript, to which a secret key refers, is
built from the associated data of updates to this secret key (via or-
acle UpR) and the ciphertexts of decapsulations with this secret key
(via oracle Dec) as these two operations may modify the secret key.
As all operations, performed with an exposed secret key, can be traced
by the adversary (i.e., updates and decapsulations; note that both are
deterministic), all secret keys that can be derived from an exposed
secret key are also marked exposed via array XP (line 41).

Finally, an adversary can solve a challenge via oracle Solve by pro-
viding a guess for the challenge key that was encapsulated for an
instance i with the encapsulation that is referenced by transcript tr .
Recall that the transcript, to which an encapsulation refers, is built
from the associated data of updates to the respective instance’s public
key (via oracle UpS) and the ciphertexts of encapsulations with this
instance’s public key (via oracle Enc) as these two operations may
modify the public key for encapsulation. If the secret key for decap-
sulating the referenced challenge key is not marked exposed (line 23)
and the guess for the challenge key is correct (line 24), then game
KUOWR stops with ‘1’ (via ‘Reward’) meaning that the adversary

134

4.2 Sufficient Security for Key-Updatable KEM

wins.
We define the advantage of any adversary A against a kuKEM∗

scheme K in game KUOWR from Figure 4.4 as Advkuowr
K (A) =

Pr[KUOWRK(A)→ 1].
As it suffices to show equivalence with key indistinguishability of

RKE (in the ROM), we chose to consider one-way security as opposed
to key indistinguishability for kuKEM∗.

Differences compared to KUOW Security The main difference
in our definition of KUOWR security compared to KUOW security
from Section 3.2 is that we allow the adversary to manipulate the
execution’s random coins here. As we define encapsulation and de-
capsulation to (potentially) update the used public key or secret key,
another conceptual difference is that we only allow the adversary to
encapsulate and decapsulate once under each public and secret key.
Thus, we assume that public and secret keys are overwritten on encap-
sulation and decapsulation, respectively. In contrast to our security
definition here, in the KUOW security game only the current secret
key of an instance can be exposed. Even though we assume the secret
key to be replaced by its newer versions on updates or decapsulations,
there might be, for example, backups that store older secret key ver-
sions. As a result we lift the restriction of only allowing exposures of
the current secret key.7 An important notational choice is that we in-
dex the variables with transcripts trs, trr instead of integer counters.
This notation reflects the idea that public key and secret key only stay
compatible as long as they are used correspondingly and immediately
diverge on different associated data or tampered ciphertexts.
We further highlight the fundamental difference towards HkuPke

by Jost et al. [JMM19]. Their notion of HkuPke does not allow (fully
adversary-controlled) associated data on public and secret key up-
dates and additionally requires (authenticated) interaction between

7It is important to note that the equivalence between KUOWR security of
kuKEM∗ and KINDR security of URKE is independent of this definitional
choice—if either both definitions allow or both definitions forbid the exposure
of also past secret keys or states respectively, equivalence can be shown.

135

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

the holders of the key parts thereby. Looking ahead, this makes
this primitive insufficient for diverging the public key from the secret
key (in the states) of users A and B during an impersonation of A
towards B in (U)RKE (especially under randomness manipulation).
This is, however, required in an optimal security definition but explic-
itly excluded in the sub-optimal RKE notion by Jost et al. [JMM19].
Since the syntax of HkuPke is already inadequate to reflect this se-
curity property, we cannot provide a separating attack. Nevertheless,
we further expound this weakness in Section 4.4.2.

Instantiation A kuKEM∗ scheme, secure in the KUOWR game,
can be generically constructed from an OW-CCA adaptively secure
hierarchical identity based key encapsulation mechanism (HIBE). The
construction—almost the same as in Section 3.2—is provided for com-
pleteness in Figure 4.5. The update of public keys is the concatenation
of associated data (interpreted as identities in the HIBE) and the up-
date of secret keys is the delegation to lower level secret keys in the
identity hierarchy. The reduction is immediate: After guessing for
which public key and after how many updates the challenge encapsu-
lation that is solved by the adversary is queried, the challenge from the
OW-CCA game is embedded into the respective KUOWR challenge.

Sufficiency of KUOWR for SRKE Before proving equivalence
between security of key-updatable KEM and ratcheted key exchange,
we shed a light on implications due to the differences between our
notion of kuKEM∗ and its KUOWR security and the notion of kuKEM
and its KUOW security from Section 3.2.

Remark 1 Even though the KUOWR game provides more power to
the adversary in comparison to the KUOW game by allowing manipu-
lation of random coins, exposures of past secret keys, and providing an
explicit decapsulation oracle (instead of an oracle that only allows for
checks of ciphertext-key pairs; cf., Figure 3.3), the game also restricts
the adversary’s power by only allowing decapsulations under the cur-
rent secret key of an instance (as opposed to also checking ciphertext-

136

4.2 Sufficient Security for Key-Updatable KEM

Proc genK
00 (sk, pk)←$ genHK
01 ad0 ← ε
02 sk ←$ delHK(sk, ad0)
03 id ← ad0; pk ← (pk, id)
04 Return (sk, pk)

Proc up(pk, ad)
05 (pk ′, id)← pk
06 pk ← (pk ′, id ‖ ad)
07 Return pk

Proc enc(pk)
08 (pk ′, id)← pk
09 (k, c)←$ encHK(pk ′, id)
10 · pk ← (pk ′, id‖c)
11 · Return (pk, k, c)

Proc dec(sk, c)
12 k ← decHK(sk, c)
13 · sk ← delHK(sk, c)
14 · Return (sk, k)

Proc up(sk, ad)
15 sk ← delHK(sk, ad)
16 Return sk

Figure 4.5: Generic construction of kuKEM∗ from an HIBE scheme. The small
changes towards Figure 3.4 (i.e., adding an internal key update in encapsulation
and decapsulation, respectively) are marked with a ‘· ’.

key pairs for past secret keys of an instance as in the KUOW game).
One can exploit this and define protocols that are secure with respect
to one game definition but allow for attacks in the other game. Con-
sequently, neither of both security definitions implies the other one.

Despite the above described distinction between both security defi-
nitions, KUOWR security suffices to build sesquidirectional RKE ac-
cording to game KIND from Figure 3.9—which was yet the weakest
notion of security of RKE for which a construction was built from a
key-updatable public key primitive. The ability to check ciphertext-
key pairs under past versions of secret keys of an instance is actually
never used in the proof from Section 3.11. The only case in which this
Check oracle is used in this proof is B’s receipt of a manipulated ci-
phertext from the adversary. Checking whether a ciphertext-key pair
for the current version of a secret key of an instance is valid, can of
course be conducted by using the Dec oracle of our KUOWR notion.
For full details on this proof we refer the reader to Section 3.11.
Consequently, for the construction of KIND secure sesquidirectional

RKE (according to Figure 3.9), the used kuKEM must either be
KUOW secure (see Figure 3.3) or KUOWR secure (see Figure 4.4),

137

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

which is formally phrased in the following observation. Thus, even
though these notions are not equivalent, they both suffice for con-
structing KIND secure sesquidirectional RKE.

Observation 1 The sesquidirectional RKE protocol R from Figure 3.10
offers key indistinguishability according to Figure 3.9 if function H is
modeled as a random oracle, the kuKEM∗ provides KUOWR security
according to Figure 4.4, the one-time signature scheme provides SUF
security according to Figure 2.3, the MAC scheme M provides SUF
security according to Figure 2.2, and the symmetric-key space of the
kuKEM∗ is sufficiently large.

4.3 Unidirectional RKE under Randomness
Manipulation

Unidirectional RKE (URKE) is the simplest variant of ratcheted key
exchange. After a common initialization of a session between two par-
ties A and B, it enables the continuous establishment of keys within
this session. In this unidirectional setting, A can initiate the com-
putation of keys repeatedly. With each computation, a ciphertext
is generated that is sent to B, who can then comprehend the com-
putation and output (the same) key. Restricting A and B to this
unidirectional communication setting, in which B cannot respond, al-
lows to understand the basic principles of ratcheted key exchange. For
the same reasons we provided the whole definition of kuKEM∗ before
(i.e., we consider our changes significant and non-trivial, and we aim
for a coherent presentation), we fully define URKE under randomness
manipulation below.

Syntax We recall that URKE is a triple UR = (init, snd, rcv) of
algorithms defined over spaces of A’s and B’s states SA and SB, re-
spectively, an associated-data space AD, a ciphertexts space C, and
a space of keys K established between A and B. We extend the syn-
tax of URKE by explicitly regarding the utilized randomness of the

138

4.3 Unidirectional RKE under Randomness Manipulation

snd algorithm. Consequently we define R as the space of random
coins rc ∈ R used in snd. To highlight that A only sends and B only
receives in URKE, we may add ‘A’ and ‘B’ as handles to the index of
snd and rcv, respectively. A shortcut notation for these algorithms is

init →$ SA × SB
SA ×AD ×R → snd → SA ×K × C or

SA ×AD → snd →$ SA ×K × C
SB ×AD × C → rcv → (SB ×K) ∪ {(⊥,⊥)}

Please note that de-randomizing (or explicitly considering the random-
ness of) the initialization of URKE is of little value since an adversary,
when controlling the random coins of init, obtains all information nec-
essary to compute all keys between A and B.

Correctness Intuitively a URKE scheme is correct, if all keys pro-
duced with send operations of A can also be obtained with the re-
sulting ciphertext by the respective receive operations of B. More
formally: Let {adi ∈ AD}i≥1 be a sequence of associated data. Let
{stA,i}i≥0, {stB,i}i≥0 denote the sequences of A’s and B’s states gen-
erated by applying snd(·, adi) and rcv(·, adi, ·) operations iteratively
for i ≥ 1, that is, (stA,i, ki, ci) ←$ snd(stA,i−1, adi) and (stB,i, k′i) ←
rcv(stB,i−1, adi, ci). We say URKE scheme UR = (init, snd, rcv) is
correct if for all stA,0, stB,0 ←$ init, for all associated-data sequences
{adi}i≥1, and for all random coins used for snd calls, the key sequences
{ki}i≥1 and {k′i}i≥1 generated as above are equal.

We note that we here explicitly require functionality (i.e., that B
can recover all keys established by A under a passive adversary) in
our correctness definition (in contrast to Figure 3.5).

Security For security, we provide the KINDR game for defining key
indistinguishability under randomness manipulation of URKE in Fig-
ure 4.6. In this game, the adversary can let the session participants A
and B send and receive ciphertexts via SndA and RcvB oracle queries,
respectively, to establish keys between them. By querying the Reveal

139

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

or Challenge oracles, the adversary can obtain these established keys
or receive a challenge key (that is, either the real established key or a
randomly sampled element from the key space), respectively. Finally,
the adversary can expose A’s and B’s state as the output of a spec-
ified send or receive operation, respectively, via oracles ExposeA or
ExposeB.
When querying the SndA oracle, the adversary can specify the ran-

dom coins rc for the invocation of the snd algorithm from the set R
or indicate that it wants the random coins to be sampled uniformly at
random by letting rc = ε. By allowing the adversary to set the ran-
domness for the invocations of the snd algorithm and exposing past
states (which was not permitted in game KIND from Figure 3.6), new
trivial attacks arise.
Below we review and explain the trivial attacks of the original

URKE KIND game from Section 3.3, map them to the KINDR game
here, and then introduce new trivial attacks that arise due to random-
ness manipulation.
A conceptual difference between our game definition here and the

games from Chapter 3 is the way variables (especially arrays) are
indexed. While the KIND games in figures 3.6, 3.9, and 3.12 make use
of counters (of send and receive operations) to index computed keys
and adversarial events, we here use the communicated transcripts,
sent and received by A and B respectively, as indices. We thereby
heavily exploit the fact that synchronicity (and divergence) of the
communication between A and B are defined over these transcripts,
which results for the stronger (and thereby more complex) adversary
in a more comprehensible (but equivalent) game notation. Please note
that, due to our indexing scheme, it suffices for our game definition
to maintain a common key array K[·] and common sets of known keys
KN and challenged keys CH for A and B (as opposed to arrays and
sets for each party).8

8This is because a key, computed during the sending of A and the corresponding
receiving of B, only differs between A and B, according to correctness, if the
received transcript of B diverged from the sent transcript of A.

140

4.3 Unidirectional RKE under Randomness Manipulation

Game KINDRb
UR(A)

00 XPA ← ∅; MR ← ∅
01 KN← ∅; CH← ∅
02 trs ← ε; trr ← ε
03 STA[·]← ⊥; STB[·]← ⊥
04 K[·]← ⊥;
05 (stA, stB)←$ init
06 STA[trs]← stA; STB[trr]← stB
07 b′ ←$ A
08 · Require KN ∩ CH = ∅
09 Stop with b′

Oracle SndA(ad, rc)
10 Require ad ∈ AD ∧ rc ∈ R ∪ {ε}
11 If rc = ε:
12 (stA, k, c)←$ snd(stA, ad)
13 Else:
14 (stA, k, c)← snd(stA, ad; rc)
15◦ MR ∪← {trs‖(ad, c)}
16◦ If trs ∈ XPA:
17◦ KN ∪← {trs‖(ad, c)}
18◦ XPA ∪← {trs‖(ad, c)}
19 trs q← (ad, c)
20 K[trs]← k; STA[trs]← stA
21 Return c

Oracle Reveal(tr)
22 Require K[tr] ∈ K
23 · KN ∪← {tr}
24 Return K[tr]

Oracle RcvB(ad, c)
25 Require ad ∈ AD ∧ c ∈ C ∧ stB 6= ⊥
26 · If trr‖(ad, c) 6� trs

∧LCP(trs, trr) ∈ XPA:
27 · KN ∪← {trr‖(ad, c)}
28 (stB, k)← rcv(stB, ad, c)
29 If k = ⊥: Return ⊥
30 trr q← (ad, c)
31 K[trr]← k; STB[trr]← stB
32 Return

Oracle ExposeA(tr)
33 Require STA[tr] ∈ SA
34 · XPA ∪← {tr}
35◦ trace ← {tr∗ ∈ T R∗ : ∀tr ′ ∈ T R∗

(tr ≺ tr ′ � tr∗ =⇒ tr ′ ∈ MR)}
36◦KN ∪← trace; XPA ∪← trace
37 Return STA[tr]

Oracle ExposeB(tr)
38 Require STB[tr] ∈ SB
39 · KN ∪← {tr∗ ∈ T R∗ : tr ≺ tr∗}
40 Return STB[tr]

Oracle Challenge(tr)
41 Require K[tr] ∈ K
42 · Require tr /∈ CH
43 k ← b ? K[tr] : $(K)
44 · CH ∪← {tr}
45 Return k

Figure 4.6: Games KINDRb, b ∈ {0, 1}, for URKE scheme UR. Lines of code
tagged with a ‘·’ denote mechanisms to prevent or detect trivial attacks without
randomness manipulation; trivial attacks caused by randomness manipulation are
detected and prevented by lines tagged with ‘◦’. We define LCP(X,Y) to return
the longest common prefix between X and Y , which are lists of atomic elements
zi ∈ (AD×C). By longest common prefix we mean the longest list Z = z0‖ . . . ‖zn

for which Z � X ∧Z � Y . We further define T R = AD×C. Line 39 is a shortcut
notion that can be implemented efficiently. XP: exposed states, MR: states and
keys affected by manipulated randomness, KN: known keys, CH: challenge keys,
trs, trr : transcripts.

141

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

The lines marked with ‘·’ in Figure 4.6 denote the handling of trivial
attacks without randomness manipulation (as in Figure 3.6). Lines
marked with ‘◦ ’ introduce modifications that become necessary due
the new trivial attacks based on manipulation of randomness.
Trivial attacks without randomness manipulations are:

(a) If the adversary reveals a key via oracle Reveal, then challenging
this key via oracle Challenge is trivial. In order to prevent reveal
and challenge of the same key, sets KN and CH trace which
keys have been revealed (line 23) and challenged (line 44). The
adversary only wins, if the intersection of both sets is empty
(line 08). Additionally, a key must only be challenged once as
otherwise bit b can be obtained trivially (line 42). Example: c ←
SndA(ε, ε); k ← Reveal((ε, c)); output [k = Challenge((ε, c))]

(b) As keys, that are computed by both parties (because ciphertexts
between them have not been manipulated yet), are stored only
once in array K (due to the indexing of arrays with transcripts
instead of pure counters), the adversary cannot reveal these keys
on one side of the communication (e.g., at A) and then challenge
them on the other side (e.g., at B). Consequently, this trivial at-
tack (which was explicitly considered in Section 3.3) is implicitly
handled by our game definition.

(c) After exposing B’s state via oracle ExposeB, the adversary can
comprehend all future computations of B. Consequently, all
keys that can be received by B in the future are marked known
(line 39). Example: stB ← ExposeB(ε); c ← SndA(ε, ε); RcvB(ε, c);
(stB , k)← rcv(stB , ε, c); output [k = Challenge((ε, c))]

(d) Exposing B’s state, as long as the communication between A
and B has not yet been manipulated by the adversary, allows
the adversary also to compute all future keys established by A
(which is also implicitly handled by our indexing of arrays via
transcripts).

142

4.3 Unidirectional RKE under Randomness Manipulation

(e) Exposing A’s state via oracle ExposeA allows the adversary to
impersonate A towards B by using the exposed state to create
and send own valid ciphertexts toB. As creating a forged cipher-
text reveals the key that is computed by B on receipt, such keys
are marked known (lines 26-27). The detection of this trivial
attack works as follows: As soon as B receives a ciphertext that
was not sent by A (i.e., B’s transcript together with the received
ciphertext is not a prefix of A’s transcript) and A was exposed
after A sent the last ciphertext that was also received by B (i.e.,
after the last common prefix LCP), the adversary is able to cre-
ate this ciphertext validly on its own.9 Example: stA ← ExposeA;
(stA, k, c)← snd(stA, ε); RcvB(ε, c); output [k = Challenge((ε, c))]

Due to randomness manipulations, the adversary can additionally
conduct the following attacks trivially:

(f) If the randomness for sending is set by the adversary (via
SndA(ad, rc), rc 6= ε) and the state, used for this sending, is
exposed (via ExposeA), then also the next state of A, output by
this send operation, will be known (and marked as exposed) as
sending is thereby deterministically computed on inputs that
are known by the adversary (lines 16,18). Since the adver-
sary can also retrospectively expose A’s state, all computations
that can be traced, due to continuous manipulated randomness
of subsequent SndA oracle queries (unified in set MR) after
such an exposure, are also marked as exposed (lines 35-36).
Example: rc ←$ R; c′ ← SndA(ε, rc); RcvB(ε, c′); stA ← ExposeA(ε);
(stA, k

′, c′) ← snd(stA, ε; rc); (stA, k, c) ←$ snd(stA, ε); RcvB(ε, c); output
[k = Challenge((ε, c′)‖(ε, c))]

9Please note that we need to detect this trivial attack this way (in contrast to the
game from Figure 3.6) because the adversary can forge ciphertexts to B without
letting the communication between A and B actually diverge. It can do so by
creating an own valid ciphertext which it sends to B (via stA ← ExposeA(ε);
rc ←$ R; (stA, k, c) ← snd(stA, ε; rc); RcvB(ε, c)) but then it lets A compute
the same ciphertext (via SndA(ε, rc)). As a result, A and B are still in sync.

143

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

(g) Similarly, if the randomness for sending is set by the adversary
and the state that A uses during this send operation is exposed,
then the key, computed during sending, is known by the ad-
versary since its computation is thereby deterministic (lines 16-
17,35-36). Example: rc ←$ R; c ← SndA(ε, rc); stA ← ExposeA(ε);
(stA, k, c)← snd(stA, ε; rc); output [k = Challenge((ε, c))]

Based on this game, we define the advantage of an adversary in
breaking the security of an URKE scheme as follows: The advantage of
an adversaryA against a URKE scheme UR in game KINDR from Fig-
ure 4.6 is Advkindr

UR (A) =
∣∣∣Pr[KINDR0

UR(A) = 1] −Pr[KINDR1
UR(A) = 1]

∣∣∣.
We say that an URKE scheme UR is secure if the advantage is negli-
gible for all probabilistic polynomial time adversaries A.
Please note that KINDR security of URKE is strictly stronger

than both KIND security notions of URKE, defined by Bellare et
al. [BSJ+17] and presented in Section 3.3 (which themselves are in-
comparable among each other).

4.4 kuKEM* to URKE

Since our ultimate goal is to show that existence of a kuKEM∗ prim-
itive is a necessary and sufficient condition to construct a URKE
primitive—albeit requiring the help of hash functions (modeled as
random oracle)—, we dedicate this section to indicate how to prove
the latter of these implications.

Construction of URKE from kuKEM∗ We give a generic way
to construct a URKE scheme UR from a kuKEM∗ scheme K with the
help of random oracle H and MAC scheme M. This transformation
K→ UR is fully depicted in Figure 4.7. Below we briefly describe the
algorithms of URKE scheme UR = (init, snd, rcv).

During the state initiation algorithm init, a kuKEM∗ key pair (sk, pk)
is generated such that the encapsulation key pk is embedded into the
sender state stA, and the decapsulation key sk into the receiver state

144

4.4 kuKEM* to URKE

stB. The remaining state variables are exactly same for A and B.
More specifically, two further keys are generated during initialization:
the symmetric chaining key k.c and a MAC key k.m. Furthermore
the sent or received transcript (initialized with an empty string ε) is
stored in each state. For brevity, we define that k.c, k.m, and the up-
date key k.u (used during sending and receiving; see below) all belong
to the same key domain K.

Proc init
00 · (sk, pk)←$ genK
01 k.c ←$ K; k.m ←$ K
02 t← ε
03 stA ← (pk, k.c, k.m, t)
04 stB ← (sk, k.c, k.m, t)
05 Return (stA, stB)

Proc snd(stA, ad)
06 (pk, k.c, k.m, t)← stA
07 · (pk, k, c)←$ enc(pk)
08 τ ← tag(k.m, ad ‖ c)
09 C ← c ‖ τ
10 t

q← ad ‖C
11 · k.o ‖ k.c ‖ k.m ‖ k.u ←

H(k.c, k, t)
12 · pk ← up(pk, k.u)
13 stA ← (pk, k.c, k.m, t)
14 Return (stA, k.o, C)

Proc rcv(stB, ad, C)
15 (sk, k.c, k.m, t)← stB
16 c ‖ τ ← C
17 Require vfyM(k.m, ad ‖ c, τ)
18 · (sk, k)← dec(sk, c)
19 Require k 6= ⊥
20 t

q← ad ‖C
21 · k.o ‖ k.c ‖ k.m ‖ k.u ←

H(k.c, k, t)
22 · sk ← up(sk, k.u)
23 stB ← (sk, k.c, k.m, t)
24 Return (stB, k.o)

Figure 4.7: Construction of a URKE scheme from a kuKEM∗ scheme K =
(genK, up, enc, dec), a message authentication code M = (tag, vfyM), and a ran-
dom oracle H. For simplicity we denote the key space of the MAC and the space
of the chaining key k.c in stA with the same symbol K. Lines marked with a ‘· ’
differ from our URKE scheme in Figure 3.7.

On sending, public key pk in A’s state is used by the encapsulation
algorithm to generate key k and ciphertext c. Then, MAC key k.m,
contained in the current state of A, is used to issue a tag τ over the
tuple of associated data ad and encapsulation ciphertext c. The fi-
nally sent ciphertext, denoted by C, is a concatenation of c and the
MAC tag τ . The output key k.o, as well as the symmetric keys of
the next state of A are obtained from the random oracle, on input
of the chaining key k.c, the freshly encapsulated key k, and the his-
tory of sent transcript t. Finally, a kuKEM∗ update is applied on pk
under associated data that is derived from the random oracle output
(denoted by k.u). Please note that the encapsulation algorithm is the
only randomized operation inside snd. Hence the random coins of the

145

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

latter are only used by this encapsulation.
On receiving, the operations are on par with the sending algorithm.

Namely, the received ciphertext C is parsed as the encapsulation ci-
phertext c and the MAC tag τ . The latter is verified with regards to
the MAC key k.m, stored in the state of B. After the key k is de-
capsulated, the same input to the random oracle H is composed. The
symmetric components of the next state and k.o are derived from the
random oracle’s output. Finally, the secret key sk is updated with k.u,
so that it is in-sync with the update of pk.

We remark that our construction in Figure 4.7 differs from the one
in Figure 3.7 only in the output of the random oracle and in the sub-
sequent use of the kuKEM∗’s update algorithm (instead, the latter
freshly generates a new KEM key pair from the random oracle out-
put). These changes are, nevertheless, significant as the scheme from
Section 3.4 is insecure when the adversary is able to (reveal or) manip-
ulate the random coins for invocations of the snd algorithm. We give
an according detailed attack description with respect to our KINDR
model, introduced here, in Section 4.4.1.

Theorem 4 The URKE protocol UR from Figure 4.7 offers key in-
distinguishability under randomness manipulation. More precisely, if
function H is modeled as a random oracle, for every adversary A
against URKE scheme UR in games KINDRb

UR from Figure 4.6 there
exists an adversary BK against kuKEM∗ scheme K in game KUOWR
from Figure 4.4 and an adversary BM against MAC M in game SUF
from Figure 2.2 such that

Advkindr
UR (A) ≤ Advkuowr

K (BK) + Advsuf
M (BM) + qH · (qSndA + qRcvB)

|K|
, where K is the key domain in the construction UR, qSndA, qRcvB, and
qH are the number of SndA, RcvB and H queries respectively by A,
and the running time of A is approximately the running time of BK
and BM.

The proof of Theorem 4 is a slight adaption of the one from Sec-
tion 3.10. This adaption has not been contributed by the author of

146

4.4 kuKEM* to URKE

this thesis. Hence, we refer the interested reader to Section 3.10 or to
the article on which this chapter bases [BRV20a, BRV20b].

4.4.1 Weaknesses of Previous URKE Schemes

As described before, both previous unidirectional RKE security defini-
tions are slightly weaker than ours, allowing the instantiations to by-
pass our equivalence result. In the following we describe (non-trivial)
attacks according to our security definition against both schemes.
Due to only allowing exposures of A in the unidirectional RKE se-

curity definition of Bellare et al. [BSJ+17], no forward secure state
update for B is required during invocations of the rcv algorithm.
Accordingly, when exposing the state of B (which contains a static
secret key) in the scheme by Bellare et al., all established keys be-
tween A and B become insecure (as opposed to only keys estab-
lished with this exposed or future states). Example: c ← SndA(ε, ε);
RcvB(ε, c); c′ ← SndA(ε, ε); RcvB(ε, c′); stB ← ExposeB((ε, c)‖(ε, c′)); (X,σ)← c;
(hk, y, i, . . .)← stB ; k ← H(hk, (i, σ,X,Xy)); output [k = Challenge((ε, c))]
While allowing the adversary to expose B’s state in our unidirec-

tional RKE security definition from Section 3.3, we there do not con-
sider randomness reveal (nor manipulation of randomness). Our ac-
cording unidirectional RKE scheme exploits this in the state update
of A and B during the invocation of snd and rcv respectively. The
new state of A during the snd invocation is derived by generating a
new KEM key pair based on the randomness of this invocation to-
gether with the secrets in the previous state of A. The secret key
of this KEM key pair is immediately discarded and only the public
key is stored in A’s state. B derives the corresponding secret key
from the ciphertext that he receives from A and his previous state se-
crets. As a consequence, an adversary obtains B’s current secret key
(and thereby all his future secret keys) as soon as it once knows the
current state of A and then manipulates randomness for the subse-
quent invocation of snd. Example: stA ← ExposeA(ε); (rc0‖rc1)←$ R; c′ ←
SndA(ε, rc0‖rc1); c ← SndA(ε, ε); (pk, k.c, km, t) ← stA; (k′e, c′e) ← enc(pk; rc0);
t← (ε, c′); (k′, k.c, km, sk)← H(k.c, ke, t); (ce, τ)← c; ke ← dec(sk, ce); t q← (ε, c);

147

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

(k, k.c, km, sk)← H(k.c, ke, t); output [k = Challenge((ε, c′)‖(ε, c))]

4.4.2 Insufficiency of Weakly Updatable PKE

Apart from our kuKEM notion from Section 3.2 (which is similar to
kuPKE by Jaeger and Stepanovs [JS18a]) and our enhanced kuKEM∗
notion from Section 4.2, Jost et al. [JMM19] introduced the notion
of healable and key-updating public-key encryption (HkuPke). The
former three are instantiated from HIBE and the latter can be derived
from efficient building-blocks based on Diffie–Hellman assumptions.
Intuitively, the key update mechanism in kuKEM∗ (and kuKEM)

depicts a one-way function that can be applied independently on secret
key and public key with respect to some associated data. It is yet
unclear, how to implement this mechanism without relying on HIBE
primitives.
In contrast, the intuition behind the update mechanism in HkuPke

depicts a merging of an old key pair with some update key pair (im-
plemented via multiplying public Diffie–Hellman shares and adding
their secret exponents respectively), and a deterministic deriving of
new key pairs. Problems with this mechanism are that the merging
is not one-way (i.e., it can be inverted) and it either requires interac-
tion from secret key holder to public key holder (for transmitting the
update public key), or the public key holder learns the secret update
exponent during the update.10

Why One-Wayness is Needed in URKE It is essential for KINDR
security of URKE that the following attack is harmless with respect
to the security of key k for all random coins rc, rc∗ ∈ R, rc 6= rc∗:
st0

A ← ExposeA(ε); ad ← ε; c1 ← SndA(ad, rc); (st1
A, k

1, c1) ← snd(st0
A, ad; rc);

(st∗A, k∗, c∗) ← snd(st0
A, ad; rc∗); RcvB(ad, c∗); st∗B ← ExposeB((ad, c∗)); c2 ←

SndA(ad, ε); st2
A ← ExposeA((ad, c1)‖(ad, c2)); k ← Challenge((ad, c1)‖(ad, c2))

10When taking a look at the details in [JMM19]: The former is the case for their
first public key ekupd which is transmitted, and the latter is the case for their
second public key ekeph which is derived together with its secret key on the
sender side.

148

4.5 URKE to kuKEM*

The state updates due to oracle queries SndA(ad, rc) and RcvB(ad,
c∗) (i.e., in the respective algorithm invocations of snd and rcv) must
diverge states st1

A and st∗B such that they cannot be used by an ad-
versary to derive the key encapsulated in c2. Note that the random
coins rc∗ can be arbitrarily chosen (e.g., similar to rc) in order to let c∗
differ from c1 only in few bits. Since any difference between c1 and c∗
must result in a divergence of st∗B from a state that can be used to
derive the key encapsulated in c2, the secrets in B’s state must be
updated on the entire incoming ciphertext. This requires a ‘one-way’
update of the secrets in B’s state that takes c∗ as respected (associ-
ated) data. Furthermore, all computations for deriving st1

A and st∗A
can be traced and determined by the adversary, since rc and rc∗ are
chosen by it. Hence, the public key update (in this state derivation)
is computed publicly (and cannot rely on any inputs from B), and the
secret key update (in the derivation of st∗B) must respect all incoming
ciphertext bits.
Consequently, the public key update is deterministic (or probabilis-

tic on adversarially chosen random coins) and based on public in-
puts, and a secret key update is based on adversarially chosen (ci-
phertext as) associated data, which is what the notion of KUOWR
secure kuKEM∗ (and KUOW secure kuKEM) reflects but the syntax
of HkuPku does not allow.
We finally remark: Jost et al. [JMM19] explicitly make it transpar-

ent that they do not aim to protect against such attacks as their main
goal is an efficient protocol but not optimal security. Hence, we do
not label it a weakness of their primitive but only an important and
notable difference.

4.5 URKE to kuKEM*

In order to show that public key encryption with independently up-
datable key pairs (in our case kuKEM∗) is a necessary building block
for ratcheted key exchange, we build the former from the latter. The
major obstacle is that the updates of public key and secret key of a

149

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

kuKEM∗ are conducted independently—consequently no communica-
tion between holder of the public key and holder of the secret key can
be exploited for updates. In contrast, all actions in ratcheted key ex-
change are based on communication (i.e., sent or received ciphertexts).
Another property that public key updates for kuKEM∗ must fulfill—
in contrast to state updates in KIND secure unidirectional RKE as
in Section 3.3—is that they must not leak any information on the ac-
cording secret key during the update computation. In the following
we first explain these sketched issues (and their origin) in more detail,
then describe how we solve it, and present a reduction of KUOWR
security to KINDR security of a generic URKE scheme.

Crucial Properties of kuKEM∗ Syntax and KUOWR security of
kuKEM∗ (as well as KUOW security of kuKEM) have several impli-
cations that we explain below. As described before, the syntax of
kuKEM∗ does not allow interactions between secret key holder and
public key holder(s) to communicate information for the key parts’
updates (see Figure 4.1). This condition originates from the utiliza-
tion of kuKEM as a building block for the instantiation of sesquidirec-
tional ratcheted key exchange (SRKE; see Section 3.5). This extended
RKE notion requires the two communication participants’ states to
immediately become incompatible as soon as one of the participants
receives a ciphertext that was manipulated by the adversary. Public
key and secret key of the used kuKEM, as part of the respective state,
are therefore updated independently in order to cause an immediate
divergence between these key pair parts. A full description of the at-
tack that is prevented by independent key updates can be found in¨
Section 3.7.2.
A second property that immediately follows from the first one is

that, for all public keys that are updated equally, a compatible secret
key can be used to decapsulate ciphertexts from all these public keys.
As a public key update can also be conducted by an adversary, the
computation of this update itself must not reveal any information on
encapsulated keys—especially not on a compatible secret key. We will

150

4.5 URKE to kuKEM*

further comment on this property when explaining that, even though
KINDR security of URKE implies KUOWR security of kuKEM∗, one
can instantiate URKE KIND securely with standard key encapsula-
tion mechanisms. In Section 4.4.1, we describe why these prior in-
stantiations of KIND secure URKE are insecure according to KINDR
security.
When deriving the notion of kuKEM∗ and its KUOWR security, we

take these properties into account, as the goal of this chapter is not to
find the minimal building block for unidirectional RKE, but for RKE
in general (e.g., also for sesquidirectional RKE).

Construction of kuKEM∗ from URKE The weaker KIND se-
curity of URKE from Section 3.3 already allows that the sender’s
state stA can always be exposed without affecting the security of any
established keys (as long as this exposed state is not used to imperson-
ate A towards B). Consequently, A’s pure state reveals no informa-
tion on encapsulated keys nor on B’s secret key(s). KIND security of
URKE further implies that B’s state only reveals information on keys
that have not yet been computed by B (while earlier computed keys
stay secure). One can imagine A’s state consequently as the public
part of a (stateful) key pair and B’s state as the secret counterpart.

The two above mentioned crucial properties of KUOW(R) security
are, however, not implied by KIND security when using stA as the
public key and stB as the secret key of a kuKEM. Firstly, updat-
ing stB (as part of receiving a ciphertext) requires that the cipher-
text, generated during sending of A (and updating of stA), is known
by B but the syntax of kuKEM does not allow an interaction between
public key holder and secret key holder. This issue can be solved by
de-randomizing the snd algorithm. If A’s state as part of the pub-
lic key is updated via a de-randomized invocation of snd, the secret
key holder can also obtain the ciphertext that A would produce for
the same update (by invoking the de-randomized/deterministic snd)
and then update stB with this ciphertext via rcv. A conceptional de-
piction of this is in Figure 4.8. Thereby the secret key is defined to

151

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

gen$
Kinit$

pk = stA

up up
pk (stA, stB) = sk

c
sndR sndR rcv

up up
pk (stA, stB) = sk

c
sndR sndR rcv

enc$ dec

pk (stA, stB) = sk
c

stA
snd$ rcv

csndR′ sndR′ rcv

Figure 4.8: Conceptual depiction of kuKEM∗ construction from generic URKE
scheme. The symbol in the upper index of an algorithm name denotes the source
of random coins (‘$’ indicates uniformly sampled). R is a fixed value. For clarity
we omit ad inputs and k outputs (cf. Figure 4.1).

contain stA in addition to stB.
Secondly, in the URKE construction from Section 3.4 A also tem-

porarily computes secrets of B that match A’s updated values dur-
ing sending. As a result, normal KIND security allows that a de-
randomized snd invocation reveals the secrets of B to an adversary
if stA is known (see Section 4.4.1 for a detailed description of this
attack). In order to solve this issue, the security definition of URKE
must ensure that future encapsulated keys’ security is not compro-
mised if snd is invoked under a known state stA and with random
coins that are chosen by an adversary (i.e., KINDR security).

Our generic construction of a KUOWR secure kuKEM∗ from a
generic KINDR secure URKE scheme is depicted in Figure 4.9. As
described before, the public key contains state stA and the secret key
contains both states (stA, stB) that are derived from the init algo-
rithm. In order to update the public key, the snd algorithm is invoked
on state stA, with the update associated-data, and fixed randomness.
Output key and ciphertext are thereby ignored. Accordingly, the se-

152

4.5 URKE to kuKEM*

cret key is updated by first invoking the snd algorithm on state stA
with the same fixed randomness and the update associated-data. This
time the respective ciphertext from A to B is not omitted but used as
input to rcv algorithm with the same associated data under stB.

Encapsulation and decapsulation are conducted by invoking snd
probabilistically and rcv respectively. In order to separate updates
from en-/decapsulation, a ‘0’ or ‘1’ is prepended to the associated-
data input of snd and rcv respectively. For bounding the probability
of a ciphertext collision in the proof, a randomly sampled ‘collision
key’ ck is attached to the associated data of the snd invocation in
encapsulation. In order to accordingly add ck to the associated data
of rcv as part of the decapsulation, ck is appended to the ciphertext.
Since state stA, output by the snd algorithm during the encapsulation,
is computed probabilistically, it is also attached to the encapsulation
ciphertext, so that (the other) stA, embedded in the secret key, can
be kept compatible with the public key holder’s. To bind ck and
stA to the ciphertext, both are integrity protected by a message au-
thentication code (MAC) that takes one part of the key from the snd
invocation as MAC key (only the remaining key bytes are output as
the encapsulated kuKEM∗ key). Additionally the whole ciphertext
(i.e., URKE ciphertext, collision key, state stA, and MAC tag) is used
as associated data for an additional ‘internal update’ of public key
and secret key in encapsulation and decapsulation, respectively. This
is done to escalate manipulations of collision key, state stA, or MAC
tag (as part of the ciphertext) back into the URKE states stA and stB
(as part of public key and secret key). For full details on the rationales
behind these two binding steps we refer the reader to the proof.

Interestingly, the public key holder can postpone the de-randomized
snd invocation for public key updates until encapsulation and instead
only remember the updates’ associated data without compromising
security. However, the updates of the secret key must be performed
immediately as otherwise an exposure of the current secret key reveals
also information on its past versions. Thereby the computation of
snd in algorithm up must be conducted during the secret key update
without interaction between public key holder and secret key holder.

153

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

Proc genK
00 (stA, stB)←$ init
01 pk ← stA
02 sk ← (stA, stB)
03 Return (pk, sk)

Proc up(pk, ad)
04 (pk, ,)← snd(pk, (0, ad); 0)
05 Return pk

Proc enc(pk)
06 ck ←$ K
07 (pk, (k, k.m), c′)←$ snd(pk, (1, ck))
08 τ ← tag(k.m, (ck, pk, c′))
09 c← (ck, pk, c′, τ)
10 (pk, ,)← snd(pk, (2, c); 0)
11 Return (pk, k, c)

Proc up(sk, ad)
12 (stA, stB)← sk
13 (stA, , c)← snd(stA, (0, ad); 0)
14 (stB,)← rcv(stB, (0, ad), c)
15 sk ← (stA, stB)
16 Return sk

Proc dec(sk, c)
17 (stA, stB)← sk
18 (ck, pk, c′, τ)← c
19 (stB, (k, k.m))← rcv(stB, (1, ck), c′)
20 Require vfyM(k.m, (ck, pk, c′), τ)
21 (stA, , c′′)← snd(pk, (2, c); 0)
22 (stB,)← rcv(stB, (2, c), c′′)
23 sk ← (stA, stB)
24 Return (sk, k)

Figure 4.9: Construction of a key-updatable KEM from a generic URKE scheme
UR = (init, snd, rcv) and one-time message authentication code M = (tag, vfyM).

Theorem 5 If URKE scheme UR is KINDR secure according to Fig-
ure 4.6, one-time MAC M is SUF secure according to Figure 2.2, and
for all (k, k.m) ∈ KUR it holds that k ∈ KK and k.m ∈ KM, then
kuKEM∗ scheme K from Figure 4.9 is KUOWR secure according to
Figure 4.4 with

Advkuowr
K (A) ≤ qGenqEnc ·

(
Advkindr

UR (BUR) + Advsuf
M (BM) + 1

|K|

)
,

with Advsuf
M (BM) ≤ Advkindr

UR (BUR)

where A is an adversary against KUOWR security, BUR is an adver-
sary against KINDR security of UR, BM is an adversary against SUF
security of M, qGen and qEnc are the number of Gen and Enc queries
by A respectively, K is the space from which ck is sampled, and the
running time of A is approximately the running time of BUR and BM.

In Section 4.5.2 we show how to construct an SUF secure one-time
MAC from a generic KINDR secure URKE scheme, which implies

154

4.5 URKE to kuKEM*

the second term in Theorem 5. We prove Theorem 5 below and pro-
vide a formal pseudo-code version of the simulation’s game hops in
Figure 4.10.

4.5.1 Proof of URKE to kuKEM*

We conduct the proof in four game hops: In the first game hop we
guess for which instance the first valid Solve oracle query is provided
by the adversary; in the second game hop, we guess for which Enc
oracle query of the previously guessed instance the first valid Solve
oracle query is provided; additionally the simulation aborts in this
game hop if the adversary crafts this first valid ciphertext and provides
it to the Dec oracle before it is output by the Enc oracle; in the third
game hop, we replace the key, output by the first snd invocation in
this guessed Enc oracle query by a randomly sampled key (which is
reduced to KINDR security of UR); in the final game hop, we abort
on a MAC forgery, provided to the Dec oracle, that belongs to the
ciphertext that is output by the guessed Enc oracle query (which is
reduced to SUF security of M).
Game 0 This game is equivalent to the original KUOWR game.
Game 1 The simulation guesses for which instance nGen the first

key k∗ is provided to the Solve oracle such that the secret key for
decapsulation is not marked exposed (i.e., tr∗ /∈ XPnGen) and the pro-
vided key equals the indicated challenge key (i.e., k∗ = CKnGen [tr∗]).
Therefore nGen is randomly sampled from [qGen], where qGen is the
number of Gen oracle queries by the adversary. The reduction aborts
if nGen is not the instance for which the first valid Solve oracle query
is provided (see Figure 4.10 lines 48,51).
Consequently we have AdvG0 = qGen ·AdvG1 .
Game 2 The simulation guesses in which of nGen’s Enc queries the

challenge is created, that is the first valid query to the Solve oracle by
the adversary. Therefore nEnc is randomly sampled from [qEnc] and
the simulation aborts if either the randomness for the nEnc’s Enc query
is manipulated as thereby no challenge would be created (lines 28,29),
or the first valid query to the Solve oracle is for another challenge than

155

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

the one created by nGen’s nEncth Enc query (lines 49,51), or a secret
key that helps to trivially solve the challenge from nGen’s nEncth Enc
query is exposed (lines 29,82).
In addition, the simulation aborts if, before the nGen’s nEncth Enc

query was made, Dec was queried on a ciphertext (with the same
preceding transcript) that contains the same URKE ciphertext and
‘collision key’ ck as nGen’s nEncth Enc query (lines 28,29). As the
probability of a collision in the URKE transcript (i.e., associated data
and ciphertext of the first snd invocation of nGen’s nEncth Enc query
were previously already provided to nGen’s nEncth Dec query under
the same preceding transcript) is bounded by a collision in the the
key space K (as thereby ck as associated data must collide), we have
AdvG1 = qEnc ·

(
AdvG2 + 1

|K|

)
.

Game 3 The simulation replaces the output (k, k.m) from the first
snd invocation of nGen’s nEncth Enc query by values randomly sam-
pled.
An adversary that can distinguish between Game 2 and Game 3

can be turned into an adversary that breaks KINDR security of URKE
scheme UR. The reduction is as follows´: The reduction obtains nGen’s
public key in oracle Gen via oracle ExposeA from the KINDR game.
Invocations of snd in UpS to nGen are replaced by SndA and ExposeA
queries. Invocations of snd in UpR to nGen are processed by the
reduction itself and the subsequent rcv invocations are replaced by
RcvB queries. The state stB in queries to Expose for nGen is obtained
via ExposeB queries to the KINDR game. For all queries to Enc of
nGen the snd invocations are replaced by SndA and ExposeA queries.
kuKEM∗ key and MAC key (k, k.m) for nGen’s Enc oracle queries are
obtained via Reveal—except for nGen’s nEncth Enc query, in which
these two keys are obtained from the Challenge oracle in the KINDR
game. Invocations of rcv in the Dec oracle for nGen are replaced by
RcvB queries and Reveal queries (in case the respective key was not
already computed in the Enc oracle). The snd invocation in oracle
Dec is directly computed by the reduction.
In order to show that manipulations of transcripts in the KUOWR

156

4.5 URKE to kuKEM*

game manipulate equivalently the transcripts in the KINDR game
(such that the state stA in the public key diverges from state stB
in the secret key iff the transcripts trsnGen and trrnGen diverge), we
define the translation array T[·] that maps the transcript of nGen in
the KUOWR game to the according transcripts in the KINDR game.
As Game 2 aborts if nGen’s nEncth Enc query entails no valid

KINDR challenge, or if the respective ciphertext was already crafted
by the adversary (and provided to the Dec oracle), an adversary, dis-
tinguishing the real key pair (k, k.m) from the randomly sampled one,
breaks KINDR security. Formally, the solution for nGen’s nEncth Enc
query to the Solve oracle is compared with the challenge key k from
the KINDR Challenge oracle (which is obtained during nGen’s nEncth
Enc query): If the keys equal, the reduction terminates with b′ = 0 (as
thereby the KINDR game’s challenge entailed the real key), otherwise
it terminates with b′ = 1.
Consequently we have AdvG2 ≤ AdvG3 + Advkindr

UR (BUR).
Game 4 The only way, the adversary can win in Game 3, is to

keep secret key and public key of nGen compatible (by updating them
equivalently and forwarding all Enc queries to the Dec oracle) and then
forwarding only the URKE ciphertext c′ of nGen’s nEncth Enc query
to the Dec oracle while manipulating parts of the remaining challenge
ciphertext. Thereby the Dec oracle outputs the correct challenge key
such that the adversary trivially wins.11

We therefore define Game 4 to let the simulation abort if a forgery
of the MAC tag for the challenge ciphertext is provided to the Dec
oracle. Distinguishing between Game 3 and Game 4 can hence be
reduced to SUF security of one-time MAC M. The reduction is as
follows: Instead of sampling k.m randomly, the MAC tag for nGen’s
nEncth Enc query is derived from the Tag oracle of the SUF game.
Since an abort requires that the URKE challenge ciphertext c′ is in-
11Please note that after this manipulation, states stA and stB in public key and

secret key, respectively, diverge, but the key, output by the Dec oracle, still
equals the challenge key. In case, URKE ciphertext c′ from the challenge ci-
phertext is already provided manipulately to the Dec oracle, the challenge key
is already independent from the key, computed in the Dec oracle.

157

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

deed received in oracle Dec (and also the transcripts prior to this
ciphertext equal for trsnGen and trrnGen), the URKE key (containing
k.m) equals. As a consequence, a crafted ciphertext (pk, c′, τ), pro-
vided to the Dec oracle, is a forgery τ for message (pk, c′) in the SUF
game.
Consequently we have AdvG3 ≤ AdvG4 + Advsuf

M (BM).
As the challenge key from nGen’s nEncth Enc query is randomly

sampled and cannot be derived from any other oracle, the advantage
in winning Game 4 is AdvG4 = 0.
Summing up the advantages above, we have:

Advkuowr
K (A) ≤ qGenqEnc ·

(
Advkindr

UR (BUR) + Advsuf
M (BM) + 1

|K|

)
≤ qGenqEnc ·

(
2 ·Advkindr

UR (BUR) + 1
|K|

)
where Advsuf

M (BM) ≤ Advkindr
UR (BUR) follows from a SUF secure one-

time MAC construction from a generic KINDR secure URKE scheme
UR (which is described in Section 4.5.2). �

158

4.5 URKE to kuKEM*

Simulation SK(A)
00 n← 0
01 nGen ←$ [qGen] G≥1
02 nEnc ←$ [qEnc]; e← 0 G≥2
03 tr◦ ← ε; c◦ ← ⊥ G≥2
04 k• ← ⊥; k.m• ← ⊥; ck• ← ⊥; c• ← ⊥ G≥3
05 Invoke A
06 Stop with 0

Oracle Gen
07 n← n+ 1
08 If n = nGen: T[·]← ⊥ G=3
09 (stA, stB)←$ init
10 pkn ← stA; skn ← (stA, stB)
11 CKn[·]← ⊥; XPn ← ∅
12 trsn ← ε; trrn ← ε
13 SKn[·]← ⊥; SKn[trrn]← skn
14 Return pkn
Oracle UpS(i, ad)
15 Require 1 ≤ i ≤ n ∧ ad ∈ AD
16 (pki, k, c)← snd(pki, (0, ad); 0)
17 If i = nGen: G=3
18 T[trsi‖ad]← T[trsi]‖((0, ad), c) G=3
19 trsi q← ad
20 Return pki
Oracle Enc(i, rc)
21 Require 1 ≤ i ≤ n
22 Require rc ∈ R ∪ {ε}
23 If rc = ε: mr ← F; rc ←$ R
24 Else: mr ← T
25 ck ←$ K
26 (pki, (k, k.m), c′)←$ snd(pki, (1, ck); rc)
27 If i = nGen ∧ e = nEnc: G≥2
28 If mr = T ∨ (∃pk ′ ∈ PK, τ ′ ∈ T :

trsi‖(ck, pk ′, c′, τ ′) ∈ XPi
∨trsi‖(ck, pk ′, c′, τ ′) � trr i): G≥2

29 Abort G≥2
30 (ck•, c•)← (ck, c′) G≥3
31 (k•, k.m•)←$ KUR G≥3
32 (k, k.m)← (k•, k.m•) G≥3
33 τ ← tag(k.m, (ck, pki, c′))
34 c← (ck, pki, c′, τ)
35 (pki, c′′, k′′)← snd(pki, (2, c); 0)
36 If i = nGen: G≥2
37 If e = nEnc: G≥2
38 tr◦ ← trsi; c◦ ← c G≥2
39 e← e+ 1 G≥2
40 T[trsi‖c]← T[trsi]‖((1, ck), c′)

‖((2, c), c′′) G=3
41 trsi q← c
42 If mr = F: CKi[trsi]← k
43 Return (pki, c)

Oracle Solve(i, tr , k)
44 Require 1 ≤ i ≤ n
45 Require tr /∈ XPi
46 Require CKi[tr] 6= ⊥
47 Reward k = CKi[tr] G<1
48 If i = nGen: G≥1
49 If tr = tr◦‖c◦: G≥2
50 Reward k = CKi[tr] G≥1,2
51 Else if k = CKi[tr]: Abort G≥1
52 Return

Oracle UpR(i, ad)
53 Require 1 ≤ i ≤ n ∧ ad ∈ AD
54 (stA, stB)← SKi[trr i]
55 (stA, k, c)← snd(stA, (0, ad); 0)
56 (stB, k)← rcv(stB, (0, ad), c)
57 If i = nGen: G=3
58 T[trr i‖ad]← T[trr i]‖((0, ad), c) G=3
59 trr i q← ad
60 SKi[trr i]← (stA, stB)
61 Return

Oracle Dec(i, c)
62 Require 1 ≤ i ≤ n ∧ c ∈ C
63 (stA, stB)← SKi[trr i]
64 (ck, pk, c′, τ)← c
65 (stB, (k, k.m))← rcv(stB, (1, ck), c′)
66 If trr i = tr◦
∧(ck•, c•) = (ck, c′) 6= (⊥,⊥): G≥3

67 (k, k.m)← (k•, k.m•) G≥3
68 Require vfyM(k.m, (ck, pk, c′), τ)
69 If trr i = tr◦ ∧ c 6= c◦

∧(ck•, c•) = (ck, c′) 6= (⊥,⊥): G≥4
70 Abort G≥4
71 (stA, k′′, c′′)← snd(pk, (2, c); 0)
72 (stB, k′′′)← rcv(stB, (2, c), c′′)
73 If i = nGen: G=3
74 T[trr i‖c]← T[trr i]‖((1, ck), c′)

‖((2, c), c′′) G=3
75 trr i q← c
76 SKi[trr i]← (stA, stB)
77 If CKi[trr i] 6= ⊥:
78 Return
79 Return k

Oracle Expose(i, tr)
80 Require 1 ≤ i ≤ n
81 Require SKi[tr] ∈ PK × SK
82 If tr � tr◦: Abort G≥2
83 XPi ∪← {tr∗ ∈ (AD ∪ C)∗ : tr ≺ tr∗}
84 (stA, stB)← SKi[tr]
85 Return (stA, stB)

Figure 4.10: Games of simulation for proof of KUOWR security for construction
from Figure 4.9.

159

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

4.5.2 One-Time MAC from URKE

Here we describe the construction of a one-time message authentica-
tion code from a generic URKE scheme. The symmetric MAC key k
can be thought of as the concatenated random coins for both one
state initialization and one invocation of the send algorithm of A in
the URKE scheme. A tag is generated by taking the message as asso-
ciated data for algorithm snd (which is invoked on randomness that
is derived from key k). The MAC tag then contains the resulting ci-
phertext as well as the key output by algorithm snd. For verification,
the rcv algorithm is invoked on the message as associated data and
the ciphertext from the tag. The resulting key is then compared to
the key from the MAC tag. We present this scheme in Figure 4.11.

Corollary 1 If URKE scheme UR is KINDR secure, then one-time
MAC scheme M from Figure 4.11 is SUF secure with Advsuf

M (A) ≤
qGenqVfyAdvkindr

UR (B) where qGen is the number of Gen queries and qVfy
is the number of Vfy queries in the multi-instance SUF notion.

Please note that in the proof of Theorem 5, only one instance and
one tag verification are necessary, resulting in a tight proof to URKE
KINDR security.
The proof of single-instance SUF security with one Vfy oracle query

is immediate: The Tag oracle of the SUF game is simulated by the
KINDR’s SndA and Challenge oracles to produce the MAC tag τ =

Proc tag(k,m)
00 rci‖rcs ← k
01 (stA, stB)← init(rci)
02 (stA, κ, c)← snd(stA,m; rcs)
03 τ ← (κ, c)
04 Return τ

Proc vfyM(k,m, τ)
05 rci‖rcs ← k
06 (stA, stB)← init(rci)
07 (κ, c)← τ
08 (stB, κ′)←$ rcv(stB,m, c)
09 Require κ = κ′

10 Return T

Figure 4.11: One-time MAC scheme M from generic URKE scheme UR =
(init, snd, rcv).

160

4.6 Discussion

(κ, c). When the (successful) adversary eventually provides a valid tag
forgery τ∗ = (κ∗, c∗) to the Vfy oracle, two cases are considered:

1. If c 6= c∗, then the KINDR’s RcvB oracle is invoked on c∗ and the
Challenge oracle is queried on the resulting key. If this challenge
key κ′ equals κ∗, then b′ = 0 is returned to the KINDR game.
Otherwise b′ = 1 is returned.

2. If c = c∗ ∧ κ 6= κ∗, then b′ = 1 is returned.

Please note that the reduction looses tightness linearly in the num-
ber of Gen and Vfy queries. As queries to Vfy either contain a known
tag, an invalid tag, or a tag forgery, the simulation is straight for-
ward: the reduction guesses, which unknown tag is the first correct
tag forgery (and uses it to solve the KINDR game) and treats all
remaining queries with unknown tags as invalid tags.

4.6 Discussion
Our results clearly show that key-updatable key encapsulation is a
necessary building block for optimally secure ratcheted key exchange,
if the security definition of the latter regards manipulation of the
algorithm invocations’ random coins. As unidirectional RKE can nat-
urally be built from sesquidirectional RKE, which in turn can be built
from bidirectional RKE (which can be derived from optimally secure
group RKE), our results are expected to hold also for the according
security definitions under these extended communication settings. In
contrast, security definitions of ratcheting that restrict the adversary
more than necessary in exposing the local state or in solving embedded
game challenges (i.e., by excluding more than unpreventable attacks)
allow for instantiations that can dispense with these inefficient build-
ing blocks.
However, the two previous security definitions fulfilled by construc-

tions that use kuKEM as a building block (cf. Table 4.1) consider only
randomness reveal [JS18a] or even secure randomness (sections 3.6
and 3.9). This raises the question whether using kuKEM in these

161

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

cases was indeed necessary (or not). The resulting gap between no-
tions of ratcheting that can be instantiated from only standard PKC
and our optimally secure URKE definition with randomness manipu-
lation, implying kuKEM∗, will be discussed in the following.

Implications under Randomness Reveal The core of our proof
(showing that URKE implies kuKEM under randomness manipula-
tion) is to utilize URKE’s state update in algorithms snd and rcv
for realizing public key and secret key updates in kuKEM’s up al-
gorithm. In order to remove the otherwise necessary communication
between snd and rcv algorithms of URKE, snd is de-randomized by
fixing its random coins to a static value. While this de-randomization
trick is not immediately possible if the reduction to URKE KIND
security cannot manipulate the randomness of snd invocations, one
can utilize a programmable random oracle to emulate it: instead of
fixing the (input) random coins of snd invocations to a static value,
one could derive these coins from the output of a random oracle on
input of the respective update’s associated data (i.e., ad input of al-
gorithm up). Additionally, instead of directly forwarding the update’s
associated data to the associated-data input of snd, another random
oracle could be interposed between them. The reduction then simply
pre-computes all kuKEM up invocations independent of associated-
data inputs by querying the SndA oracle in the URKE KIND game
on random associated-data strings. Then the reduction reveals all
used random coins in the URKE KIND game and programs them
as output into the random oracle lazily (i.e., as soon as the adver-
sary queries the random oracle on update associated-data strings).
By correctly guessing, which of the adversary’s random oracle queries
fit its queried kuKEM update invocations, the reduction can perform
the same de-randomization trick as in our proof. The probability of
guessing correctly is, however, exponential in the number of queried
kuKEM updates such that a useful implication may only be derivable
for a constant number of queried updates.
In conclusion, we conjecture that URKE under randomness re-

162

4.6 Discussion

veal already requires the use of a kuKEM-like building block with
a constantly bounded number of public key and secret key updates.
Thereby we argue that our proof approach partially carries over to
the case of randomness reveal. This would indicate that the use
of a kuKEM-like building block in the construction of Jaeger and
Stepanovs [JS18a] is indeed necessary. The formal analysis of this
conjecture is left as an open question for future work.

Implications under Secure Randomness For optimal security
under secure randomness, we show in sections 3.4 and 3.10 that URKE
can be instantiated from standard PKC only (cf. Table 4.1). In con-
trast, our construction of sesquidirectional RKE from Section 3.6
uses kuKEM for satisfying optimal security under secure random-
ness. Since an adversary against SRKE (under KIND security with
secure randomness) has no access to random coins respectively used
in the RKE algorithms, our de-randomization trick seems inapplica-
ble. Furthermore, while the RKE algorithms snd and rcv can use
exchanged ciphertexts for their state updates, generically transform-
ing this state update to realize a ‘silent’, non-interactive key update
needed for kuKEM without our trick appears (at least) problematic.
Nevertheless, it is likely that SRKE KIND security under secure

randomness requires kuKEM-like building blocks. This intuition is
based on the example attack from Section 3.7.2 which we shortly re-
call and summarize. This attack illustrates that a key k∗, computed
by any secure SRKE construction under the according adversarial ex-
ecution, needs to be indistinguishable from a random key according
to this security notion. The attack proceeds as follows: 1. Alice’s and
Bob’s states are exposed (stA ← ExposeA(ε); stB ← ExposeB(ε)), 2. Bob
sends update information to Alice (which is possible in SRKE) to re-
cover from his exposure (c← SndB(ε, ε); RcvA(ε, c)). Keys established by
Alice after receiving the update information are required to be secure
again. Translated to the kuKEM setting, this step corresponds to Bob
generating a new key pair and publishing the respective public key.
3. Simultaneously Alice is impersonated towards Bob ((st′A, k′, c′) ←$

163

4 Necessity of Strong Building Blocks for Optimally Secure Ratcheting

sndA(stA, ε); RcvB(ε, c′)). This requires Bob’s state to become incom-
patible with Alice’s state. In the kuKEM setting, this corresponds to
the secret key being updated with c′ as associated data. Note that c′
can be independent of Bob’s state update from step 2 via cipher-
text c, and the computation of c′ is fully controlled by the adversary.
4. Afterwards Bob’s state is again exposed (st′B ← ExposeB((ε, c)‖(ε, c′))).
5. Finally, Alice sends and establishes key k∗ which is required to be
secure (c′′ ← SndA(ε, ε)). 6. Exposing Alice’s state thereafter should not
harm security of k∗ (st′′A ← ExposeA((ε, c′′))).
We observe that, as with a kuKEM public key, Alice’s state is pub-

licly known during the entire attack. Only Alice’s random coins when
establishing k∗ and updating her state, and Bob’s random coins when
sending, as well as his resulting state until he receives c′ are hid-
den towards the adversary. We furthermore note that, by computing
ciphertext c′, the adversary controls Bob’s state update. As a conse-
quence, Bob’s state update must reach forward-secrecy for key k∗ with
respect to adversarially chosen associated update data c′ and Bob’s
resulting (diverged) state st ′B.
All in all, the security requirements highlighted by this attack em-

phasize the similarity of kuKEM’s and SRKE’s security. Nevertheless,
we note that all our attempts to apply our proof technique for this
case failed due to the above mentioned problems. Therefore, formally
substantiating or disproving the intuition conveyed by this attack re-
mains an open question for future work.

Open Questions and Impact With the results in this chapter we
aim to motivate research on another remaining open problem: can
key-updatable KEM be instantiated more efficiently than generically
from HIBE? It is, in contrast, evident that equivalence between HIBE
and RKE is unlikely as constructions of the latter only utilize one
‘identity path’ of the whole ‘identity tree’ of the former.
Conclusively, we note that defining security for, and constructing

schemes of interactive ratcheted key exchange variants (i.e., under
bidirectional communication) is highly complicated and consequently

164

4.6 Discussion

error-prone.5 By providing generic constructions (instead of ad-hoc
designs) and grasping core components and concepts of ratcheted key
exchange, complexity is reduced and sources of errors are eliminated.
Additionally, our equivalence result serves as a benchmark for current
and future designs of ratcheted key exchange—especially group RKE.
For future constructions that only rely on standard public key cryp-
tography either of the following questions may arise: how far is the
adversary restricted such that our implication is circumvented, or how
far is the construction secure under the respective security definition?

165

5
Communication Costs of

Ratcheting in Groups

Contents

5.1 Introduction . 168
5.2 Security of Concurrent Group Ratcheting 176
5.3 Deficiencies of Existing Protocols 179
5.4 Key-Updatable Public Key Encryption 185
5.5 Intuition for Lower Bound 186
5.6 Upper Bound of Communication Complexity 194
5.7 Lower Bound of Communication Complexity 202
5.8 Discussion . 227

While ratcheting in the two-party setting is the focus of the previous
chapters and has generally attracted a lot of attention in the litera-
ture, the problem of recovering from the exposure of honest protocol
participants’ local states, also called post-compromise security (PCS),
in the group setting (i.e., group ratcheting) is much less understood.
On the one hand, one can achieve excellent security by simply ex-

ecuting, in parallel, a two-party ratcheting protocol (e.g., our BRKE
construction from Chapter 3 or less secure but more efficient variants
like the Signal protocol) for each pair of members in a group. How-
ever, this incurs O(n) communication overhead for every message sent,
where n is the group size. On the other hand, several related protocols
were recently developed in the context of the IETF Messaging Layer
Security (MLS) effort that improve the communication overhead per
message to O(logn). However, this reduction of communication over-
head involves a great restriction: group members are not allowed to

167

5 Communication Costs of Ratcheting in Groups

send and recover from exposures concurrently such that reaching PCS
is delayed up to n communication time slots (potentially even more).
In this chapter we formally study the trade-off between PCS, con-

currency, and communication overhead in the context of group ratch-
eting. Since our main result here is a lower bound, we define the
cleanest and most restrictive setting where the tension already oc-
curs: static groups equipped with a synchronous (and authenticated)
broadcast channel, where up to t arbitrary parties can concurrently
send messages in any given round. Already in this setting, we show
in a symbolic execution model that PCS requires Ω(t) communication
overhead per message. Our symbolic model permits as building blocks
black-box use of (even dual) PRFs, (even key-updatable) PKE (which
in our symbolic definition is at least as strong as HIBE), and broad-
cast encryption, covering all tools used in previous group ratcheting
constructions, but prohibiting the use of exotic primitives.
To complement our result, we also prove an almost matching upper

bound of O(t · (1+log(n/t))), which smoothly increases from O(logn)
with no concurrency, to O(n) with unbounded concurrency, matching
the previously known protocols.

Contributions by the Author This entire chapter has almost
exclusively been contributed by the author of this thesis. The full
version [BDR20c] of the paper that has been published in the pro-
ceedings of TCC 2020 [BDR20b] contains, in addition to the contents
of this chapter, both a formal proof of performance and security for
the upper-bound construction from Section 5.6. Sections 5.1 and 5.6
were jointly contributed by the author of this thesis and co-authors
from [BDR20b].

5.1 Introduction

We recall that post-compromise security [CCG16] refers to the ability
of a given protocol to recover—by means of normal protocol oper-
ations —from the exposure of local states of its (otherwise honest)

168

5.1 Introduction

participants.
The concepts behind realizing PCS in group ratcheting can be split

into two approaches: On the one extreme, several systems, including
Signal Messenger itself, achieve PCS in groups by simply executing, in
parallel, a two-party PCS-secure protocol (e.g., our BRKE construc-
tion or the Signal protocol) for each pair of members in a group. In
addition to achieving PCS, this simple technique is also extremely re-
silient to asynchronicity and concurrency: people can send messages
concurrently, receive them out-of-order, or be off-line for extended
periods of time. However, it comes at a steep communication over-
head O(n) for every message sent, where n is the group size.
On the other hand, several related protocols [CCG+18, ACDT20,

ACC+19a, ACJM20] (some of them introduced under the term con-
tinuous group key agreement (CGKA)1) were recently developed in
the context of the IETF Message Layer Security (MLS) initiative for
group messaging [BBM+20a]. One of the main goals of this initiative
was to achieve PCS in groups with a significantly lower communica-
tion overhead. And, indeed, for static groups, these protocols improve
this overhead per message to O(logn), More precisely, these protocols
separate protocol messages into two categories: Payload ciphertext,
used to actually encrypt messages, have no overhead, but also do not
help in establishing PCS. In contrast, update ciphertexts carry no pay-
load, but exclusively establish PCS: intuitively, an update ciphertext
from user A refreshes all cryptographic material held by A. These
update ciphertexts have size proportional to O(logn) in MLS-related
protocols, which is a significant saving for large groups, compared to
the pairwise-Signal protocol.

Concurrency. Unfortunately, this reduction of communication over-
head for MLS-related protocols involves a great restriction: all update
ciphertexts must be generated and processed one-by-one in the same

1By distinguishing between ‘CGKA’ and ‘group ratcheting’, these works differ-
entiate between the asymmetric cryptographic parts of the protocols and the
entire key establishment procedure, respectively [ACJM20]. In order to avoid
this strict distinction, we call it ‘group ratcheting’ here.

169

5 Communication Costs of Ratcheting in Groups

order by all the group members. We stress that this does not just
mean that update ciphertexts can be prepared concurrently, but pro-
cessed in some fixed order. Instead, a fresh update ciphertext cannot
be prepared until all previous update ciphertexts are processed. In
particular, it is critical to somehow implement what these protocols
call a ‘delivery server’, whose task is to reject all-but-one of the con-
currently prepared update ciphertexts, and then to ensure that all
group members process the ‘accepted updates’ in the same correct
order. Implementing such a delivery server poses a significant burden
not only in terms of usability (which is clear), but also for security
of these protocols, as it delays reaching PCS up to n communication
time slots (potentially more in asynchronous settings, such as mes-
saging). Indeed, the concurrency restriction of MLS is currently one
of the biggest criticisms and hurdles towards its wide-spread use and
adoption (see [ACDT20] for extensive discussion of this). In contrast,
pairwise Signal does not have any such concurrency restriction, albeit
with a much higher communication overhead. See Section 5.3 and
Table 5.1 for more detailed comparison of various existing methods
for group ratcheting.
Our Main Question. This brings us to the main question we study
in this chapter:

What is the trade-off between PCS, concurrent sending and low
communication complexity in group ratcheting protocols?

For our lower bound, we define the cleanest and most restrictive set-
ting where the tension already occurs: static groups equipped with a
synchronous (and authenticated) broadcast channel, where up to t ar-
bitrary users can concurrently send ciphertexts in any given round. In
particular, t = 1 corresponds to the restrictive MLS setting which, we
term ‘no concurrency’, and t = n corresponds to unrestricted setting
achieved by pairwise Signal, which we term ‘full concurrency’. Also,
without loss of generality, and following the convention from previous
chapters that is also established in MLS-related protocols, we focus
on the ‘key encapsulation’ mechanism of group ratcheting protocols.
Namely, our model is the following:

170

5.1 Introduction

We have a static group of n members whose goal is to continu-
ously share a group key k. Group members have private states st,
and communicate in rounds over a public broadcast channel. Each
round refreshes the current group key k into the next group key k′

as follows: 1. At the beginning of a round, an arbitrary subset of up
to t group members is selected by the adversary to update the cur-
rent group key k. These group members are called senders (of a given
round). 2. During each round, each sender—unaware of the identities
of other senders—tosses fresh random coins, sends a ciphertext c over
the broadcast channel, and updates its private state st. 3. At the
end of each round, all (up to t) ciphertexts c are received by all n
users, who use them to update their state st, and output a new group
key k′. 4. At the end of each round, the adversary can learn the cur-
rent group key k′, and is also allowed to expose an arbitrary number
of group member states st.

For our lower bound, we will demand the following, rather weak,
PCS guarantee. A key k after round i (not directly revealed to the
attacker) is secure if: (a) no user is exposed in round i′ ≥ i; (b) all
users sent at least one update ciphertext between their latest exposure
and round i − 1; and (c) after all exposed users sent once without
being exposed again, at least one user additionally sent in round j ≤
i. Condition (a) will only be used in our lower bound (to make it
stronger), to ensure that our lower bound is only due to PCS, but
not the complementary property forward-secrecy, which states that
past round keys cannot be compromised upon current state exposure.
However, our upper bound will achieve forward-secrecy, dropping (a).
Condition (b) is the heart of PCS, demanding that security should

be eventually restored once every exposed user updated its state. Con-
dition (c) permits a one-round delay before PCS takes place. While
not theoretically needed, avoiding this extra round seems to require
some sort of multiparty non-interactive key exchange for concurrent
state updates, which currently requires exotic cryptographic assump-
tions, such as multi-linear maps [BGK+18, BS02]. In contrast, the
extra round allows to use traditional public-key cryptography tech-
niques, such as the exposed user sending fresh public-keys, and future

171

5 Communication Costs of Ratcheting in Groups

senders using these keys in the extra round to send fresh secret(s) to
this user. While condition (c) strengthens our lower bound, our up-
per bound construction can be minimally adjusted to achieve PCS for
non-concurrent state updates even without this ‘extra round’.

Our Upper Bound. We show nearly matching lower and upper
bounds on the efficiency of t-concurrent, PCS-secure group ratchet-
ing schemes. With our upper bound we provide a group ratchet-
ing scheme with communication overhead O(t · (1 + log(n/t))), which
smoothly increases from O(logn) with no concurrency, to O(n) with
unbounded concurrency, matching the upper bounds of the previously
known protocols. Our upper bound is proven in the standard com-
putational model. For the weak notion of PCS alone sketched above
(i.e., conditions (a)-(c)), we only need public-key encryption (PKE)
and pseudo-random functions (PRFs). Our construction carefully bor-
rows elements from the complete subtree method of [NNL01] used in
the context of broadcast encryption (BE), and the TreeKEM pro-
tocol of the MLS standard [BBM+20a, ACDT20] used in the con-
text of non-concurrent group ratcheting. Similarly, one can view our
construction as an adapted combination of components from Tainted
TreeKEM [ACC+19a] and the most recent MLS draft [BBM+20b] with
its propose-then-commit technique. By itself, none of these construc-
tions is enough to do what we want: BE scheme of [NNL01] allows to
send a fresh secret to all-but-t senders from the previous round (this
is needed for PCS), but needs centralized distribution of correlated se-
cret keys to various users, while the TreeKEM schemes no longer need
a group manager, but do not withstand concurrency of updates in a
rather critical way. Finally, the propose-then-commit technique, when
naively combined with (Tainted) TreeKEM as in MLS [BBM+20b],
in the worst case induces an overhead linear in the group size, and
still does not completely achieve our desired concurrency and PCS
guarantees. Nevertheless, we show how to combine these structures
together—in a very concrete and non-black-box way—to obtain our
scheme with overhead O(t · (1 + log(n/t))).

Moreover, we can easily achieve forward-security in addition to PCS

172

5.1 Introduction

(i.e., drop restriction (a) on the attacker), by using the recent tech-
nique of [JMM19, ACDT20], which basically replaces traditional PKE
with so called updatable PKE (uPKE). Informally, such PKE is state-
ful, and only works if all the senders are synchronized with the re-
cipient (which can be enforced in our model, even with concurrency).
Intuitively, each uPKE ciphertext updates the public and secret keys
in a correlated way, so that future ciphertexts (produced with new
public key) can be decrypted with the new secret key, but old cipher-
texts cannot be decrypted with the new secret key. Hence, uPKE
provides an efficient and practical mechanism for forward-secrecy in
such a synchronized setting, without the need of heavy, less efficient
but more powerful tools, such as hierarchical identity based encryp-
tion (HIBE), directly used as a building block for strongly secure group
ratcheting [ACJM20], or used as an intermediary component to build
stronger key-updatable PKE (kuPKE)2 as (similarly) introduced in
sections 3.2 and 4.2.

Our Lower Bound. We prove a lower bound Ω(t) on the efficiency
of any group ratcheting protocol which only uses ‘realistic’ tools, such
as (possibly key-updatable2) PKE, (possibly so called dual) PRFs, and
general BE (see Chapter 2 for explanations of these terms). We define
our symbolic notion of key-updatable PKE so that it even captures
functionality and security guarantees at least as strong as one expects
from HIBE. To the best of our knowledge, these primitives include
all known tools used in all ‘practical’ results on group ratcheting (in-
cluding our upper bound). Thus, our result nearly matches our upper
bound, and shows that the O(n) overheard of pairwise Signal protocol
is optimal for unbounded concurrency, at least within our model.
To motivate our model for the lower bound, group ratcheting would

be ‘easy’ if we could use ‘exotic’ tools, such as multiparty non-interactive
key agreement (mNIKE), multi-linear maps, or general-purpose obfus-

2While for our upper bound construction weaker and more efficient uPKE (based
on DH groups) suffices as in [JMM19, ACDT20], to strengthen our lower bound
we allow constructions to use stronger and less efficient key-updatable PKE
(thus far based on HIBE) as (similarly) introduced in sections 3.2 and 4.2.

173

5 Communication Costs of Ratcheting in Groups

cation. For example, using general mNIKE, one can easily achieve
PCS and unbounded concurrency, by having each member simply
broadcast its new public key, without any knowledge of other senders:
at the end of each round, the union of latest keys of all the group mem-
bers magically (and non-interactively) updates the previous group key
to a new, unrelated value. Of course, we currently do not have any
even remotely practical mNIKE protocols, so it seems natural that
we must define a model which only permits the use of ‘realistic’ tools,
such as (ku)PKE, (dual) PRFs, BE, (HIBE,) etc.
To formally address this challenge, we use a symbolic modeling

framework inspired by the elegant work of Micciancio and Panjwani
[MP04], who used it to derive a lower bound for the efficiency of multi-
cast encryption. Symbolic models treat all elements as symbols whose
algebraic structure is entirely disregarded, and which can be used only
as intended. For example, a symbolic public key can be defined to only
encrypt messages, and the only way to decrypt the resulting cipher-
text is to have another symbol corresponding to the associated secret
key. In particular, under this definition one cannot perform any other
operations with the symbolic public key, such as verifying a signature,
using it for a Diffie–Hellman key exchange, etc.
We use such a symbolic model to precisely define the primitives we

allow, including the grammar of symbols and valid derivation rules
between them. We then formalize the intuition for our lower bound in
Section 5.5 (before doing a formal proof in Section 5.7). Our bound is
actually very strong: it is the best-case lower bound, which holds for
any execution schedule of group ratcheting protocols within our model,
and which is proven against highly restricted adversaries for extremely
little security requirements. Specifically, we show that each sender for
round i must send at least one fresh ciphertext over the broadcast
channel ‘specific’ to every sender of the previous round (i−1).3 While
intuitively simple, the exact formalization of this result is non-trivial,
in part due to the rather advanced nature of the underlying primitives

3Except for itself, if the sender was active in the prior round. This intuitively
explains why our ‘best-case’ lower bound is actually (t− 1) and not t.

174

5.1 Introduction

we allow. For example, we must show that no matter what shared
infrastructure was established before round (i−1), and no matter what
information a sender A sent in round (i − 1), there is no way for A
to always recover at round i from potential exposure at round (i− 2),
unless every sender B in round i sends some ciphertext ‘only to A’.

Perspective. To put our symbolic result in perspective, early use of
symbolic models in cryptography date to the Dolev-Yao model [DY81],
and were used to prove ‘upper bounds’, meaning security of protocols
which were too complex to analyze in the standard computational
model (with reductions to well established simpler primitives or as-
sumptions). In contrast, Micciancio and Panjwani [MP04] observed
that symbolic models can also be used in a different way to prove
impossibility results (i.e., lower bounds) on the efficiency of build-
ing various primitives using a fixed set of (symbolic) building blocks.
This is interesting because we do not have many other compelling
techniques to prove such lower bounds.
To the best of our knowledge, the only other technique we know

is that of black-box separations [IR89]. While originally used for
black-box impossibility results [IR89], Gennaro and Trevisan [GT00]
adapted this technique to proving efficiency limitations of black-box
reductions, such as building psedorandom generators from one-way
permutations. However, black-box separation lower bounds are not
only complex (which to some extent is true for symbolic lower bounds
as well), but also become exponentially harder, as the primitive in
question becomes more complex to define, or more diverse building
blocks are allowed. In particular, to the best of our knowledge, the
setting of group ratcheting using kuPKE, HIBE, dual PRFs, and BE
used in this chapter, appears several orders of magnitude more com-
plex than what can be done with the state-of-the-art black-box lower
bounds.
Thus, we hope that the results in this chapter renew the interests

in symbolic lower bounds, and that our techniques would prove useful
to study other settings where such lower bounds could be proven.

175

5 Communication Costs of Ratcheting in Groups

5.2 Security of Concurrent Group Ratcheting

In this chapter we consider an abstraction of group ratcheting under
significant relaxations and restrictions with respect to the real-world.
The purpose of this approach is to disregard irrelevant aspects in order
to highlight the immediate effects of concurrent state updates in group
ratcheting.
In the following, we define syntax and (restricted) security of ratch-

eting in static groups against computationally bounded adversaries.
We assume in our model that all group members have access to a
round-based reliable and authenticated broadcast. Additionally, since
our focus are concurrent operations in an initialized group, we consider
an abstract initialization algorithm for deriving initial user states.4

Syntax A static group ratcheting protocol for a finite key space K
is a triple GR = (init, snd, rcv) of algorithms together with a space of
local states ST , a ciphertext space C, and a space of random coins R.
The initialization algorithm init takes as input the number of group
members n ∈ N and (freshly sampled) random coins r ∈ R, and
creates an initial local state sti ∈ ST for every participating group
member i ∈ [n]. For sending, a member invokes algorithm snd with
its own current local state st ∈ ST and random coins r ∈ R to obtain
as output its updated state st ′ ∈ ST and update information within
a ciphertext c ∈ C that is to be sent via the broadcast. The receive
algorithm rcv takes the member’s current state st ∈ ST and a set
of update ciphertexts c ⊂ C (e.g., all broadcast ciphertexts since this
member’s last receiving), and outputs the updated state st ′ ∈ ST
and the current (common) group key k ∈ K, or a rejection symbol.
As a consequence, all members compute the current group key on
receipt (and not already when sending). A shortcut notation for these

4We note that we only consider a single independently established group ses-
sion. For protocols in which participants use the same secrets simultaneously
across multiple (thereby dependent) sessions, we refer the reader to a work by
Cremers et al. [CHK19]. Both the problems and the solutions for these two
considerations appear to be entirely distinct.

176

5.2 Security of Concurrent Group Ratcheting

algorithms is

N×R → init → ST n, n ∈ N
ST ×R → snd → ST × C

ST × P(C) → rcv → (ST × K) ∪ {(⊥,⊥)}

For the treatment in our symbolic model, we consider (secret) ran-
domness explicitly.

Security Security experiments KINDb
GR, formally defined in Fig-

ure 5.1, in which adversary A attacks scheme GR proceed as follows:
Adversary A first determines the number of group members n. Af-
terwards the challenger invokes the init algorithm to generate initial
secret states for all members. Then the security experiment continues
in rounds. In every round i

• adversary A chooses set U i
S of senders. For each sender u ∈

U i
S algorithm snd is invoked. All resulting ciphertexts are both

given to A and received by all group members via invocations
of algorithm rcv.

• adversary A chooses set U i
X of exposed users. The local state

of each user u ∈ U i
X after receiving in round i is given to A.

During the entire security experiment, A can challenge group keys
established in any round i∗. A either obtains a random key (if b = 0)
or the actual group key from round i∗ (if b = 1) in response. When
terminating, A returns a guess b′ such that it wins if b = b′ and for all
challenged group keys it holds that:
(a) no user was exposed after a challenged group key was computed

(see Figure 5.1 line 30),
(b) every user sent at least once after being exposed and before a

challenged group key was computed (see line 20), and
(c) after all exposed users sent once without being exposed again,

at least one user additionally sent before a challenged group key
was computed (see line 20).

Group keys for which conditions (a)-(c) hold are marked secure.
We restrict the adversary with condition (a) only because the re-

sulting weaker security definition already suffices to prove our lower

177

5 Communication Costs of Ratcheting in Groups

Game KINDb
GR(A)

00 phase ← 1; i← 1
01 K[·]← ⊥; XU ← ∅
02 SEC ← ∅; CH ← ∅
03 (ς, n)←$ A
04 (st1, . . . , stn)←$ init(n)
05 phase ← 2
06 b′ ←$ A(ς)
07 If CH ⊆ SEC :
08 Stop with b′
09 Stop with 0

Oracle Reveal(i∗)
10 Require K[i∗] 6= ⊥
11 k ← K[i∗]; K[i∗]← ⊥
12 Return k

Oracle Round(U)
13 Require phase > 1
14 Require U ⊆ [n]
15 For all u ∈ U :
16 (stu, cu)←$ snd(stu)
17 C ←

⋃
u∈U cu

18 For all u ∈ [n]:
19 (stu, ku)← rcv(stu,C)
20 If XU = ∅ ∧ (U 6= ∅
∨i− 1 ∈ SEC):

21 SEC ← {i}
22 XU ← XU \U
23 K[i]← k1
24 i← i+ 1
25 Return C

Oracle Expose(U)
26 Require phase > 1
27 Require U ⊆ [n]
28 XU ← XU ∪U
29 ST ←

⋃
u∈U{stu}

30 SEC ← SEC \ [i− 1]
31 Return ST

Oracle Challenge(i∗)
32 Require K[i∗] 6= ⊥
33 CH ← CH ∪ {i∗}
34 k0 ←$ K
35 k1 ← K[i∗]
36 K[i∗]← ⊥
37 Return kb

Figure 5.1: Security experiment of concurrent group ratcheting in the computa-
tional model. Note that the overall game mechanism corresponds to the one in
the symbolic setting (see Figure 5.7) except that we require key indistinguishabil-
ity here. Line 30 is removed for our construction’s security to require immediate
forward-secrecy.

bound of communication complexity. For our full model in which our
construction for the upper bound is secure, we strengthen adversaries
by lifting restriction (a) by ignoring line 30 in Figure 5.1. This re-
flects that our upper bound construction achieves immediate forward-
secrecy while our lower bound already holds without requiring any
form of forward-secrecy.
Condition (b) models that a user who was exposed must generate

fresh secrets and send the respective public values to the group be-
fore it can receive confidential information for establishing new secure
group keys. After all exposed users recovered by sending subsequently,
their sent contribution must be used effectively to establish a new
secret group key. Therefore, condition (c) additionally requires one
further response from a user as a reaction to all newly contributed
public values.
For removing condition (c) either 1. the last users who recovered did

so concurrently at most as a pair of two (such that their new public

178

5.3 Deficiencies of Existing Protocols

contributions can be merged into a shared group key non-interactively
with NIKE mechanisms), or 2. multiparty NIKE schemes exist (for
resolving cases of more concurrently recovering users). In order to
simplify our security definition by not introducing an according case
distinction tracing occurrences of case 1, we generally restrict the ad-
versary with condition (c). We note that for proving our lower bound,
restricting the adversary by this condition strengthens our result.
Intuitively, a group ratcheting scheme is secure if no adversary A

exists that wins the above defined security experiment with probability
non-negligibly higher than 1/2.

Restrictions of the Model With the following abstractions, sim-
plifications, and restrictions in our above defined model, we support
clarity and comprehensibility of our results and strengthen the state-
ment of our lower bound. We consider: 1. A round-based commu-
nication setting, 2. Static groups, 3. All group members receive in
every round, 4. Only passive adversaries 5. Adversaries can expose
users only after receiving, and 6. Adversaries cannot attack used ran-
domness. As we do not aim to develop a functional and secure group
messenger but to theoretically analyze the foundations of concurrent
group ratcheting, we believe this is justified.

5.3 Deficiencies of Existing Protocols

The problem of constructing group ratcheting could be solved trivially
if efficient multiparty non-interactive key exchange schemes existed.
Especially for the concurrent recovery from state exposures in group
ratcheting, the lack of this tool appears to be crucial: Due to not be-
ing able to combine independently proposed fresh public key material,
existing efficient group ratcheting constructions cannot process con-
current operations as we will explain in this section. In Table 5.1 we
summarize the characteristics of previous group ratcheting schemes in
comparison to our construction and the lower bound.

179

5 Communication Costs of Ratcheting in Groups

PCS Concurrency Overhead
Sender Key Mechanism [RMS18] # 1
Parallel Signal [RMS18, CCD+17, ACD19] n
Asynchronous Ratcheting Trees [CCG+18] # log(n)
Causal TreeKEM [Wei19] G# H# log(n)
TreeKEM Familiy [ACDT20, ACC+19a] # log(n)
MLS Draft-09 [BBM+20b] G# H# n
Strengthened Tainted TreeKEM [ACJM20] G# H# log(n)
Our Construction t · (1 + log(n/t))
Our Lower Bound t− 1

Table 5.1: Properties of group ratcheting constructions and our lower bound.
t = |U i−1

S | is the number of members who sent concurrently in the previous round.
For the overhead we consider a worst-case scenario in a constant size group. Con-
structions denoted with ‘G#’/‘H#’ provide PCS under no concurrency and can handle
concurrent state updates without reaching PCS with them.

Sender Key Mechanism WhatsApp uses the so called sender key
mechanism for implementing group chats [RMS18]. This mechanism
distributes a symmetric sender key for each member in a group. When
sending a group message, the sender protects the payload with its own
sender key, transmits the resulting (single) ciphertext, and hashes
the used sender key to obtain its next sender key. The receivers de-
crypt the ciphertext with the sender’s sender key and also update the
sender’s sender key by hashing it.
While the deterministic derivation of sender keys induces no com-

munication overhead after the initial distribution of sender keys, it
implies the reveal of all future sender keys as soon as a member state
is exposed (breaking PCS). However, as each group member’s key
material is processed and used independently, concurrently initiated
group operations can be processed naturally.

Parallel Execution of Pairwise Signal The group ratcheting
mechanism implemented in the Signal messenger bases on parallel exe-
cutions of the two-party Double Ratchet Algorithm [PM16, CCD+17,
ACD19] between each pair of members in a group [RMS18]. Due to
splitting the group of size n into its n2 independent pairwise com-
ponents, this construction can naturally handle concurrency. At the
same time, this approach induces a communication overhead of O(n)

180

5.3 Deficiencies of Existing Protocols

ciphertexts per sent group payload.
Since the Double Ratchet Algorithm reaches PCS for each pair of

members, also its parallel execution achieves this goal for the group
against passive adversaries or if the member set remains static. In
an independent work [Rös18, RMS18] we describe an active attack
against PCS in dynamic groups that exploits the decentralized mem-
bership management implemented in Signal. Furthermore, the de-
layed recovery from state exposures in the Double Ratchet Algorithm
due to a strictly alternating update schedule between protocol par-
ticipants (cf. analysis and fix in [ACD19]) lets recoveries from state
exposures in the group become effective only after every group mem-
ber sent once at worst. With stronger two-party ratcheting protocols
(e.g., our constructions from Chapter 3 or [JS18a, ACD19, JMM19])
this problem can be solved.

Asynchronous Ratcheting Tree While the two above described
approaches compute and use multiple symmetric keys in parallel for
protecting communication in groups, the following constructions do
so by deriving a single shared group key at each step of the group’s
lifetime. Therefore they arrange asymmetric key material on nodes
in a tree structure in which each leaf represents a group member and
the common root represents the shared group secret. Every group
member stores the asymmetric secrets on the path from its leaf to
the common root in its local state. For updating the local state, in
order to recover from an adversarial exposure, all constructions let the
updating member generate new asymmetric secrets for each node on
their path to the root.
In the Asynchronous Ratcheting Trees (ART) design [CCG+18],

these asymmetric secrets are exponents in a Diffie–Hellman (DH)
group. State updates of a member’s path is conducted as follows:
the updating member freshly samples a new secret exponent for its
own leaf and then deterministically derives every ancestor node’s se-
cret exponent as the shared DH key from its two children’s public DH
shares. All resulting new public DH shares on the path are sent to the

181

5 Communication Costs of Ratcheting in Groups

group, inducing a communication overhead of O(log(n)) per update
operation. Other members perform the same derivations for updated
nodes on their own paths to the root to obtain the new exponents.
Since all secrets in the updating member’s local state are renewed
based on fresh random coins, this mechanism achieves PCS.
The reason for ART not being able to process concurrent update

operations is that simultaneous updates of nodes in the tree with
independently computed DH exponents cannot be merged into a joint
tree structure while reaching PCS. For t concurrent updates, a t-party
NIKE would be needed to combine the resulting t new proposed DH
shares into a shared secret exponent for the ancestor node at which
all updating members’ paths to the root join together. (As mentioned
before, if multiparty NIKE existed, group ratcheting can be solved
trivially without complex tree structures.)

Causal TreeKEM As in the ART design, Causal TreeKEM [Wei19]
uses exponents in a DH group as asymmetric secrets on nodes in the
tree. Also the update procedure is conceptually the same. How-
ever, in case of concurrently proposed path updates, the conflicting
new exponents on a node are combined via exponent-addition and the
conflicting public DH shares on a node are combined via multiplying
these group elements.
Although this merge-mechanism resolves conflicts caused by concur-

rency, the combination of updated path secrets is not post-compromise
secure: the old exponents of two nodes (from which their updating
users A and B aimed to recover), whose common parent was updated
via a combination of concurrent path updates, suffice to derive their
parent’s resulting new exponent. (The new exponent is the old expo-
nent mixed with random values from A and B that they encrypt to
the other’s old node key.)

TreeKEM Family The family of TreeKEM protocols [ACDT20,
ACC+19a] uses as asymmetric key material for nodes in the tree
key encapsulation mechanism (KEM) key pairs or, in forward-secure

182

5.3 Deficiencies of Existing Protocols

TreeKEM, updatable KEM key pairs. For updating its local state, a
group member samples a fresh secret from which it deterministically
derives seeds for each node on its path to the root, such that all an-
cestor seeds can be derived from their descendant seeds (but not vice
versa). The updating member generates the new key pair for each
updated node from its seed deterministically, and encapsulates the
node’s seed to the public key of the child which is not on the mem-
ber’s path to the root. This mechanism achieves PCS and induces a
communication overhead of O(log(n)) per update.

The idea of recovery from exposures is undermined in case of con-
currency, since updating members send their new seeds for a node on
their path to public keys of siblings, simultaneously being updated
and replaced by new key material of members who concurrently up-
date: the potentially exposed secrets from which one updating mem-
ber aims to recover can then be used to obtain the new secrets with
which the other updating user aims to recover (as in the case of Causal
TreeKEM). Consequently, concurrent updates in TreeKEM are essen-
tially ineffective with respect to PCS.
Forward-secure TreeKEM [ACDT20] uses an updatable KEM for

enhancing forward-security guarantees of the above described mecha-
nism. Tainted TreeKEM [ACC+19a] enhances PCS guarantees with
respect to dynamic membership changes in groups. Neither of these
changes affect the trade-offs discussed here.

MLS Draft-09 Based on TreeKEM, the most recent draft of MLS
[BBM+20b] distinguishes between two state update variants: (a) In an
update proposal a member refreshes only its own leaf key pair, removes
all other nodes on the path from this leaf to the root, and makes the
root parent of all nodes that thereby became parentless. (b) In a
commit a member combines previous update proposals and refreshes
all key pairs on the path from its own leaf to the root (matching the
normal TreeKEM update as described in the last paragraph).
In principle, both update variants achieve PCS for respective the

sender. However, for simultaneously sent commits, all but one are re-

183

5 Communication Costs of Ratcheting in Groups

jected (e.g., by a central server) meaning that PCS under concurrency
is not achieved for rejected updating commits. Furthermore, while up-
date proposals can be processed concurrently, they eventually let the
tree’s depth degrade to 1, inducing a worst-case overhead of O(n) for
later commits.5

Optimally Secure Tainted TreeKEM Recently and concurrent
to our work for this chapter, an optimally secure variant of group
ratcheting, based on a combination of Tainted TreeKEM and MLS
draft-09, was proposed by Alwen et al. [ACJM20]. In addition to au-
thentication guarantees (which is independent of our focus), their pro-
tocol achieves strong security guarantees for group partitions caused
by concurrency: instead of assuming that a (consensus) mechanism
rejects conflicting commits as in MLS, they anticipate that different
sub-groups of group members may process different of these commits
such that the overall perspective on the group diverges. Their proto-
col guarantees that, after diverging, exposing states of one sub-group’s
members does not affect the security of another sub-groups’ secrets.
Intuitively, this is achieved by using HIBE key pairs on the tree’s
nodes that are regularly updated via secret-key-delegation based on
identity strings that reflect the current perspective on the group. (For
details, we refer the interested reader to [ACJM20].)
While these changes increase security with respect to some form of

forward-secrecy under group partitions, they do not entirely solve the
issue of conflicting commits as in MLS: committed state updates still
only have an effect in a sub-group that processes the commit such that
only one user at a time can update secrets on the path from its leave
to the root whereas other user’s path updates remain ineffective.

Our construction from Section 5.6 bypasses the issue of concurrently
generated, incompatible path proposals by postponing the update of
affected nodes in the tree by one communication round. However, ‘im-

5Consider, for example, a scenario in which the same majority of members always
sends update proposals and a fixed disjoint set of few members always commits.
In this case, the overhead of commits for these few members converges to O(n).

184

5.4 Key-Updatable Public Key Encryption

mediate’ PCS can still be reached for non-concurrent updates by com-
posing our construction with one of the above described ones without
loss in efficiency. We note that some of the above constructions provide
strong security guarantees with respect to active adversaries, dynamic
groups, entirely asynchronous communication, or weak randomness,
which is out (and partially independent) of our consideration’s scope.

5.4 Key-Updatable Public Key Encryption
Before turning to our results, we introduce the notion of key-updatable
public key encryption, used in this chapter. As key-updatable KEM
(introduced in Sections 3.2 and 4.2) adds an update mechanism for
the key pair components to standard KEM, key-updatable public key
encryption (kuPKE) is an extension of standard public key encryption
that allows for independent updates of public and secret key with
respect to associated data.
A kuPKE scheme for a message space M and an associated data

space AD is a quadruple UE = (gen, up, enc,dec) of algorithms to-
gether with a samplable secret key space SK, and spaces of public
keys PK and ciphertexts C. As for kuKEM, algorithm up takes an
associated-data string together with either a public key or a secret key
and produces a new public key or secret key, respectively. A shortcut
notation for kuPKE algorithms is:

SK → gen → PK PK ×M → enc →$ C
PK ×AD → up → PK SK × C → dec → M∪ {⊥}
SK ×AD → up → SK

A kuPKE scheme UE is correct if for synchronously updated public
key and secret key, the latter can decrypt ciphertexts produced with
the former: Pr[∀n ∈ N dec(skn, enc(pkn,m)) = m : sk0 ←$ SK, pk0 =
gen(sk0),∀i ∈ [n] adi ←$ AD, pki+1 = up(pki, adi), ski+1 = up(ski, adi),
m←$ M] = 1.
A secure kuPKE scheme intuitively guarantees that a message, en-

crypted to public key pk ′ that was derived from another public key pk

185

5 Communication Costs of Ratcheting in Groups

via sequential updates under associated-data from vector ad ∈ AD∗,
cannot be decrypted by a (computationally bounded, or symbolic) ad-
versary even with access to any secret keys, derived via updates from
pk’s secret key sk under an associated-data vector ad ′ ∈ AD∗ such
that ad ′ is not a prefix of ad. Note that this intuitive security notion
matches security of HIBE when associated data is being parsed as
identity strings.

All remaining building blocks that we consider in this chapter (i.e.,
dual PRF and BE) are jointly introduced in Chapter 2.

5.5 Intuition for Lower Bound

Our lower bound proof intuitively says that every group ratcheting
scheme with better communication complexity than this bound is ei-
ther insecure, or not correct, or cannot be built from the building
blocks we consider. In the following, we first list these considered
building blocks and argue why the selection of those is indeed justi-
fied (and not too restrictive). We then abstractly explain the symbolic
security definition of group ratcheting, and finally sketch the steps of
our proof that is formally given in Section 5.7.

5.5.1 Symbolic Building Blocks

The selection of primitives which a group ratcheting construction
may use to reach minimal communication complexity in our symbolic
model is inspired by the work of Micciancio and Panjwani [MP04].
For their lower bound of communication complexity in multi-cast
encryption—which can also be understood as group key exchange—,
Micciancio and Panjwani allow constructions to use pseudo-random
generators, secret sharing, and symmetric encryption. We instead
consider 1. (dual) pseudo-random functions, 2. key-updatable public
key encryption (with functionality and symbolic security guarantees
at least as strong as those of hierarchical identity based encryption),
and 3. broadcast encryption and thereby significantly extend the power

186

5.5 Intuition for Lower Bound

of available building blocks. As secret sharing appears to be rather
irrelevant in our setting—as well as it is irrelevant in their setting—,
we neglect it to achieve better clarity in model and proof.

Bulding Blocks in Related Work To support the justification of
our selection, we note that all previous constructions of group ratch-
eting base on equally or less powerful building blocks than we con-
sider here: The ART construction [CCG+18] relies on a combination
of dual PRF and Diffie–Hellman (DH) group. The actual properties
used from the DH group can also be achieved by using generic public
key encryption (PKE)—as demonstrated by its following successors.
TreeKEM as proposed in the MLS initiative [ACDT20, BBM+20b] re-
lies on a PRG and a PKE scheme. TreeKEM with extended forward-
secrecy [ACDT20] relies on a PRG and an updatable PKE scheme.
The syntax of the latter in combination with the respective compu-
tational security guarantees can be considered weaker than our ac-
cording symbolic variant of kuPKE. Tainted TreeKEM [ACC+19a]
relies on a PKE scheme in the random oracle model. Optimally se-
cure Tainted TreeKEM [ACJM20] relies on an HIBE scheme in the
random oracle model. As noted before, functionality and security
guarantees of HIBE are captured in our symbolic notion of kuPKE.
The property of the random oracle that allows for mixing multiple in-
put values of which at least one is confidential to derive a confidential
random output can be achieved similarly by using (a cascade of) dual
PRF invocations.6

Only the post-compromise insecure merge-mechanism of DH shares
from Causal TreeKEM [Wei19] is not captured in our symbolic model.
Turning this mechanism post-compromise secure results in multi-party
NIKE, which we intentionally exclude.

6If the constructions in [ACC+19a, ACJM20] would rely on stronger (security)
guarantees of the random oracle model, their practicability might be question-
able.

187

5 Communication Costs of Ratcheting in Groups

Grammar The grammar definition of the considered building blocks
bases on five types of symbols: messages M , secret keys SK , symmet-
ric keys K, public keys PK , and random coins R (which is a terminal
type). These types and their relation are specified in the lower right
corner of Figure 5.2. For simplicity (and in order to strengthen our
lower bound result), we consider algorithms gen and enc interoperable
for kuPKE and BE.7

Derivation of protected values:
a) m ∈M =⇒ M ` m
b) M ` k =⇒ ∀ad M ` prf(k, ad)
c) M ` k1, k2 =⇒ M ` dprf({k1, k2})
d) M ` enc(pk,RM ,m), sk :

Fit(pk,RM , sk) =⇒ M ` m
Derivation of public values:
g) M ` sk =⇒ M ` gen(sk)
h) M ` pk =⇒ ∀ad M ` up(pk, ad)
i) M ` pk,m =⇒ ∀RM M ` enc(pk,RM ,m)

Derivation of secret keys:
e) M ` sk =⇒ ∀ad M ` up(sk, ad)
f) M ` sk =⇒ ∀u M ` reg(sk, u)

Grammar rules:
1. M 7→ SK |PK |enc(PK ,S(N),M)
2. SK 7→ K|up(SK ,M)|reg(SK ,N)
3. K 7→ R|prf(K,M)|dprf({K,K})
4. PK 7→ gen(SK)|up(PK ,M)

Figure 5.2: Grammar and derivation rules of building blocks in our symbolic
model.

Derivation Rules Symbolic security for the building blocks is de-
fined via derivation rules that describe the conditions under which
symbols can be derived from sets of (other) symbols. These rules are
defined in Figure 5.2 clustered into those with which protected values
can be obtained, with which secret keys can be updated or registered,
and with which public values can be obtained.
Rules b) and c) describe the security of (dual) PRFs, rules d), e), and

g) to i) describe the security and functionality of kuPKE (and HIBE),
and rules d), f), g), and i) describe the security and functionality of
BE.

7As a simplification we use N to denote the user input symbol of BE, S(·) to
denote an unordered compilation of multiple such symbols, and {·, ·} to denote
an unordered compilation of two key symbols. For kuPKE encryptions the
second parameter in our symbolic model can be ignored.

188

5.5 Intuition for Lower Bound

Rule d), describing the conditions under which a ciphertext can be
decrypted, uses predicate Fit that validates the compatibility of public
key and secret key (and set of removed registered users). Intuitively,
a secret key sk is compatible with a public key pk if all updates for
obtaining sk correspond to updates for obtaining pk in the same order
and under the same associated data with respect to an initial key pair,
or if the former was registered under the main secret key of the latter
(details are in Section 5.7.1).

5.5.2 Symbolic Group Ratcheting

The syntax of group ratcheting was introduced in Section 5.2. In
the following we map this syntax to the grammar definition above,
and shortly give an intuition for the correctness and security of group
ratcheting in the symbolic model.
Inputs and outputs of group ratcheting algorithms init, snd, and rcv

are random coins R, local user states ST , ciphertexts C, and group
keys K. In our grammar these random coins are sets of type R sym-
bols, local states and ciphertexts are sets of type M symbols, and
group keys are symbols of type K.
According to this grammar, we require from symbolic constructions

of group ratcheting for being correct that 1. all outputs of a group
ratcheting algorithm invocation can be derived from its inputs via the
derivation rules defined above and 2. in each round the group keys,
computed by all users, are equal. The first condition is necessary to al-
low for symbolic adversaries. We note that this condition furthermore
implies ‘inverse derivation guarantees’, meaning that symbols can only
be obtained via our derivation rules. For example, for inputs IN and
outputs OUT of an algorithm invocation, output k′ ∈ OUT with
prf(k, ad) = k′ is either also element of set IN (i.e., k′ ∈ IN), or k′ is
encrypted in a ciphertext contained in set IN, or IN ` k holds. We
make these inverse derivation guarantees explicit in Section 5.7.6.

Security To transfer the computational security experiment from
Section 5.2 to the execution of symbolic attackers against group ratch-

189

5 Communication Costs of Ratcheting in Groups

eting, only few small changes are necessary: 1. a symbolic adversary A
follows the above defined derivation rules for an unbounded time,
2. the target of A is not to distinguish securely marked real group
keys from random ones but to derive such securely marked keys from
the ciphertexts, sent in each round, and the states, exposed at the end
of each round, with these derivation rules.
A group ratcheting scheme is secure in the symbolic model if an

unbounded adversary cannot derive any of the securely marked group
keys from the combination of all rounds’ ciphertexts and exposed
states via the above defined rules. The fully formal variant of this
definition is in Figure 5.7.

5.5.3 Lower Bound

Using this symbolic framework, we formulate a sketched variant of
Theorem 7 that expresses the lower bound of communication com-
plexity for secure (and correct) group ratcheting constructions:

Let GR be a secure and correct group ratcheting scheme. For
every round i in a symbolic execution of GR with senders U i

S
and exposed users U i

X, the number of sent symbols is |C[i]| ≥
|U i

S| · (|U i−1
S | − 1).

For our proof, we consider a symbolic adversary that proceeds as
follows:

1. In round i− 2 a set of members U i−2
X ⊆ [n] with |U i−2

X | > 1 is
exposed.

2. In subsequent round i−1 these exposed users send (i.e., U i−1
S

..=
U i−2

X).

3. In round i a non-empty set of members ∅ 6= U i
S ⊆ [n] sends.

Assuming no user was exposed in any round before or after i− 2, our
symbolic security definition requires the group key in round i to be
secure (i.e., not derivable from exposed states and sent ciphertexts up
to round i). In order to show that each sender in round i must send

190

5.5 Intuition for Lower Bound

at least |U i−1
S | − 1 ciphertexts to establish this secure group key, we

analyze the effects of exposures in round i− 2, sending in round i− 1,
and sending in round i in the following paragraphs.
At the end of round i−2 any symbol derivable by users in set U i−2

X
is also derivable by the adversary. After generating new secret random
coins at the beginning of round i − 1, users in set U i−1

S can derive
symbols, that the adversary cannot derive, from these new random
coins and public symbols from their (exposed) state. We call such
derivable symbols of types SK , K, and R that the adversary cannot
derive useful secrets. Symbols of these types that are derivable by the
adversary are called useless secrets (resulting in two complementary
sets). Before sending in round i− 1, new useful secrets of a user u∗ ∈
U i−1

S are only derivable for u∗ itself but not for any other user u ∈
[n] \ {u∗}. This is because the origin of these new useful secrets are
the new secret random coins generated at the beginning of round i−1
and no communication took place after their generation yet. Hence,
at sending in round i− 1 users in set U i−1

S share no compatible useful
secrets with other users. Secrets are called compatible if they are equal
or if they are registered via rule f) under the same (main) secret key.
We formulate three observations: I) For deriving a public key pk

from a set of type R symbols it is necessary according to grammar
rule 4. and derivation rules g) and h) (with their inverse derivation
guarantees) that its secret key sk (or one of its update-ancestors’ secret
key sk) is derivable from this set as well. II) For deriving a ciphertext c,
encrypted to a public key pk, from a set of type R symbols it is
necessary according to grammar rule 1. and derivation rule i) (with
its inverse derivation guarantees) that this public key pk is derivable
from it as well. III) Unifying all random coins generated by all users
up to (including) round i−1 except those generated by user u∗ ∈ U i−1

S
in round i − 1 forms a set of type R symbols from which all useful
secrets at the beginning of round i − 1 can be derived except those
that are new to user u∗ at that point. Combining these observations
shows that at the beginning of round i− 1 no user u 6= u∗ can derive
public keys to useful secrets of user u∗ ∈ U i−1

S . This further implies
that user u cannot derive ciphertexts encrypted to such public keys.

191

5 Communication Costs of Ratcheting in Groups

As a result, the set of symbols sent by one user u ∈ U i−1
S in round i−1

contains no ciphertexts directed to useful secrets derivable by another
user u∗ ∈ U i−1

S \{u} that would transport useful secrets between such
users.
We further observe: According to the inverse derivation guarantees

of rule c), both inputs to a dual PRF invocation must be derivable
for deriving its output. As this requires a shared useful secret on in-
put for deriving a shared useful secret as output, also a dual PRF
establishes no shared (compatible) useful secrets in round i − 1. All
remaining derivation rules either output no secrets, or are unidimen-
sional, meaning that they only immediately derive one (useful) secret
from another. As a result, also after receiving in round i− 1 users in
set U i−1

S share no compatible useful secrets.
Sampling random coins before sending in round i again produces

no shared compatible useful secrets between users that shared none
before. Hence, also before receiving in round i, users in set U i−1

S share
no compatible useful secrets. We recall that our symbolic correctness
and security definition requires for the given adversary that the shared
group key derived in round i (after receiving) is a useful secret.
For quantifying the number of ciphertexts sent in round i, we define

two key graphs Gbefore
i and Gafter

i that represent useful secrets as nodes
and derivations among them as edges. Secret y being derivable from
secret x is represented by a directed edge from x to y. Although
inspired by the proof technique of Micciancio and Panjwani [MP04],
the use of key (derivation) graphs in our proof is entirely new.
Graph Gbefore

i includes a node for each useful secret that exists
after receiving in round i and an edge for each derivation among
them except for derivations possible only due to ciphertexts sent in
round i. Graph Gafter

i contains Gbefore
i and additionally includes edges

for derivations possible due to ciphertexts sent in round i. Thus, the
number of additional edges in Gafter

i equals the number of sent ci-
phertexts in round i. Mapping our derivation rules to edges is highly
non-trivial (e.g., each sent ciphertext must appear at most once). All
details are in Definition 2 and Figure 5.8 of the proof in Section 5.7.
The fact that users in set U i−1

S share no compatible useful secrets

192

5.5 Intuition for Lower Bound

before receiving in round i finds expression in graph Gbefore
i as fol-

lows: Every such user u ∈ U i−1
S is represented by nodes in a set V iu

that stand for its useful secret random coins from rounds i− 1 and i
(the latter only if u also sent in round i). For every pair of users
u1, u2 ∈ U i−1

S with u1 6= u2 there exists no node in graph Gbefore
i that

is reachable via a path from a node in set V iu1 and a path from a
node in set V iu2 simultaneously (including trivial paths). In contrast,
every set V iu with u ∈ U i−1

S must contain a node from which a path in
graph Gafter

i reaches node v∗ that represents the group key in round i.
In graph Gbefore

i node v∗ was reachable via a path from nodes V iu
of at most one user u ∈ U i−1

S . Otherwise v∗ would have been a
compatible useful secret for two users in set U i−1

S before receiving in
round i. Consequently, at least one edge per user u∗ ∈ U i−1

S \ {u}
must be included in Gafter

i in addition to those contained in Gbefore
i .

Hence, Gafter
i contains at least |U i−1

S | − 1 more edges than Gbefore
i ,

implying that at least |U i−1
S | − 1 ciphertexts were sent in round i.

We now observe that invocations of algorithm snd in every round are
independent of sets U j

X for all j, and invocations of algorithm snd in
round i are independent of set U i

S. As a consequence, every sender u ∈
U i

S must send |U i−1
S |−1 ciphertexts, anticipating the worst case that

it is the only sender in that round. Therefore, |U i
S| · (|U i−1

S | − 1)
ciphertexts are sent in (every) round i.

Interpretation This lower bound, formally proved in Section 5.7,
describes the best case of communication complexity both within our
model but partially also with respect to the real-world: it holds against
very weak adversaries for significantly reduced functionality require-
ments of group ratcheting without any form of required forward-
secrecy. Lower bounds, induced by forward-secrecy for group key ex-
change [MP04], may furthermore apply to practical group ratcheting
and therefore increase necessary communication complexity thereof.8

8We observe that if a group-ratcheting-equivalent of the amortized log(n)
lower bound for forward-secure group key exchange by Micciancio and Pan-
jwani [MP04] applies as a factor on our lower bound, then our construction

193

5 Communication Costs of Ratcheting in Groups

We note that our result even applies to any two rounds between which
no user sent.
Bypassing our lower bound is possible for constructions that exploit

the algebraic structure of elements (which is forbidden in symbolic
models), base on building blocks that we do not allow here (e.g., mul-
tiparty NIKE), or provide weaker security guarantees (e.g., recover
from state exposures only with an additional delay in rounds).
For clarity we note that the key graph concept used here is indepen-

dent of the tree structure of keys within our upper bound construction
in Section 5.6.

5.6 Upper Bound of Communication
Complexity

In order to overcome the deficiencies of existing protocols, we postpone
the refresh of parts of the key material in the group by one operation.
The resulting construction closely (up to a factor of ≈ log(n/t)) meets
our communication complexity lower bound.
For computational security of group ratcheting, games KINDb

GR
from Figure 5.1 are slightly adapted to additionally require imme-
diate forward-secrecy. We note that the use of (a weak form of)
kuPKE instead of standard PKE in our construction is only due to
required forward-secrecy. Furthermore we emphasize that this used
weak kuPKE can be efficiently built from standard assumptions (see
e.g., a construction from DDH in [JMM19]).

5.6.1 Construction

Our construction uses ideas from the complete subtree method of
broadcast encryption [NNL01] and resembles concepts from TreeKEM
[ACDT20, ACC+19a]. More specifically, the construction bases on a
static complete (directed) binary tree structure τ with n leaves (i.e.,
one leaf per group member), on top of which at every node, there is

from Section 5.6 has optimal communication complexity.

194

5.6 Upper Bound of Communication Complexity

an evolving kuPKE key pair. The secret key at each of the n leaves
is known only by the unique user that occupies that leaf. For the
remaining nodes we maintain the invariant that the only secret keys
in a user’s state at a given time are those that are at nodes along the
direct path of its corresponding leaf to the root of the tree.
We refer to the children of a node v in a tree as v.c0 (left child)

and v.c1 (right child), and its parent as v.p. Furthermore we let i, j, i >
j be two rounds in which the set of sending group members is non-
empty and there is no intermediate round l, i > l > j, with non-empty
sending set. For simplicity in the description we define j ..= i− 1.

Sending To recover from state exposures, our construction lets sen-
ders in round i − 1 refresh only their own individual leaf key pair.
Senders in round i then refresh all remaining secret keys stored in the
local states of round i− 1 senders (i.e., for nodes on their direct paths
to the root) on their behalf. This is illustrated in Figure 5.3. Note that
(as explained below in paragraph Receiving) all group members collect
the senders of round i−1 into a set U i−1 in the rcv algorithm of round
i − 1. Our construction, formally defined in Figure 5.4, accordingly
lets all senders in a round perform five tasks:

1) To refresh their own individual secret key: Generate a fresh
secret key for their corresponding leaf and send the respective
public key to the group (lines 11-12, 32).

2) To refresh and rebuild direct paths of last round’s senders: Sam-
ple a new seed for the leaf of each sender of the last round and
encrypt it to the respective sender’s (refreshed) leaf public key
(lines 15-18). Then derive a seed for each non-leaf node on the
direct paths from these leaves to the root using the new seeds at
the leaves (line 19). Each seed will be used to deterministically
generate a fresh key pair for its node.

3) To share refreshed secrets with members who did not send in
the last round: Encrypt the new seed of each refreshed non-leaf
node to the public key of its child from which it was not derived

195

5 Communication Costs of Ratcheting in Groups

Before round i− 1:

1 2 3 4 5 6 7 8

After round i− 1:

1 2 3 4 5 6 7 8

After round i:

1 2 3 4 5 6 7 8

Key pair considered insecure
Key pair considered secure
New leaf key pair
Seed for new key pair(s)

Derived from
Encrypted to
Updated/replaced
in round i

Figure 5.3: Example tree for two rounds i−1 and i with n = 8, U i−1 = {1, 4, 8},
and U i 6= ∅. In round i − 1, senders generate new key pairs for their leaves. In
round i, senders generate seeds for all nodes considered insecure from round i− 1
and replace leaf key pairs for round i − 1 senders, as shown in the bottom-right
corner.

(lines 21-24, 27-30). Update the used public keys via kuPKE
algorithm up (lines 25, 31).

4) To inform the group of changed public keys: Send all changed
public keys to the group, including those for which seeds were
renewed, and those that were updated via kuPKE (lines 19, 25,
31, 32).

5) Sample and encrypt a group key k for the round to all other
users in the group (lines 13, 17, 23, 32).

In step 2), one seed is individually encrypted to each user in set U i−1
via public key encryption, which will allow them to reconstruct their
direct path in the tree. The purpose of this individual encryption is to
let the recent senders forget their old (potentially exposed) secrets and
use their fresh secret (which they generated during their last sending)
to obtain new, secure secrets on their direct path.
We now describe how all remaining group members are able to re-

build the tree in their view. The reader is invited to follow the expla-
nation and focus their attention on the tree in the lower right corner
of Figure 5.3. In this tree, directed edges represent the derivation of a
seed at a node from one of its children (dotted) or encryption of a seed

196

5.6 Upper Bound of Communication Complexity

at a node to one of its children (dashed). We consider the Steiner Tree
ST (U i−1) induced by the set of leaves of users in U i−1. ST (U i−1) is
the minimal subtree of the full tree that connects all of the leaves
of U i−1 and the root; in the lower right corner tree of Figure 5.3,
ST (U i−1) is the subtree of blue filled circles and edges between them.
For each degree-one node v of ST (U i−1) (i.e., nodes with only one
child in the Steiner Tree), its seed is encrypted to the public key of its
child which is not in ST (U i−1). This seed can be used to derive some
(possibly all) of the secret keys for the nodes on the direct path of v,
including v itself (lines 20-25). We denote the set of such degree one
nodes of the Streiner Tree as ST (U i−1)1 and the child of a node v
in ST (U i−1)1 that is not in the Steiner Tree as v.c/∈ST(U i−1).9 For
each degree-two node v of ST (U i−1) (i.e., nodes with two children in
the Steiner Tree), its seed is encrypted to the public key of its right
child (lines 26-31). We denote the set of such degree-two nodes of the
Steiner Tree as ST (U i−1)2. All of these encrypted seeds are derived
from the fresh leaf seeds of users in set U i−1 via prf computations, as
explained below in paragraph Construction Subroutines.
Alongside the seeds, some randomly sampled associated data ad is

also encrypted in the ciphertexts of the above paragraph (lines 21,
27). Public keys used for the encryption are afterwards updated with
this associated data ad (lines 25, 31). Upon receipt, this associated
data is used correspondingly to update the secret keys as well. Due
to this mechanism, immediate forward-secrecy is achieved since secret
keys stored in users’ local states are updated as soon as they are used
for decryption.
We refer to the union of nodes that are in the Steiner Tree with

nodes that are children of degree-one nodes in the Steiner Tree as
CST = {v : v ∈ ST (U i−1) ∨ v = w.c6∈ST(U i−1)∀w ∈ ST (U i−1)1}. For
step 4) above, senders must publish the new public keys corresponding
to all nodes of CST (U i−1) (lines 19, 25, 31, 32).

9We overload the set theoretic symbol /∈ here for brevity.

197

5 Communication Costs of Ratcheting in Groups

Proc init(n)
00 i← 1,U 0 ← ∅
01 m← CBT(n)
02 SK init ←$ SKm
03 PK τ ← genPKTree(SK init)
04 ksav ←$ K
05 For u from 1 to n:
06 SKu ← getSKPath(SK init, u)
07 sk0 ← ⊥; sk1 ← ⊥
08 stu ← (u, i,PK τ ,SKu,U 0, sk0, sk1, ksav)
09 Return (st1, . . . , stn)

Proc snd(st)
10 (u, i,PK τ ,SKu,U i−1, sk0, sk1, ksav)← st
11 sk ′ ←$ SK
12 pk ′ ← gen(sk ′)
13 k ←$ K ∩M
14 DK [·]← ⊥
15 For each v ∈ U i−1:
16 DK [v]←$ K ∩M
17 ct ←$ enc(PK τ [v],DK [v]||k)
18 CT [v]← ct
19 (DKST(U i−1),PKST(U i−1))←

genSTree(DK ,U i−1)
20 For each v ∈ ST (U i−1)1:
21 ad ←$ AD ∩M
22 pk ← PK τ [v.c6∈ST(U i−1)]
23 ct ←$ enc(pk,DKST(U i−1)[v]||ad||k)
24 CT [v]← ct
25 PKST(U i−1)[v.c6∈ST(U i−1)]← up(pk, ad)
26 For each v ∈ ST (U i−1)2:
27 ad ←$ AD ∩M
28 pk ← PKST(U i−1)[v.c1]
29 ct ←$ enc(pk, DKST(U i−1)[v]||ad)
30 CT [v]← ct
31 PKST(U i−1)[v.c1]← up(pk, ad)
32 bc ← (u, pk ′,CT ,PKST(U i−1))
33 st ← (u, i,PK τ ,SKu,U i−1, sk0, sk ′, ksav)
34 Return (st, bc)

Proc rcv(st,BC)
35 (u, i,PK τ ,SKu,U i−1, sk0, sk1, ksav)← st
36 If BC = ∅:
37 U i ← U i−1
38 skip to line 56
39 U i ← ∅
40 Let bc∗ ∈ BC be first in some definite

order
41 (v, pk ′,CT ,PKST(U i−1))← bc∗
42 If u ∈ U i−1:
43 kder||k ← dec(sk0,CT [u])
44 v∗ ← u
45 Else:
46 v∗ ← getSNode(u,ST (U i−1))
47 sk ← SKu[v∗.c6∈ST(U i−1)]
48 kder||ad||k ← dec(sk,CT [v∗])
49 SKu[v∗.c6∈ST(U i−1)]← up(sk, ad)
50 (SK ′u,PK ′τ)←

Rebuild(st,PKST(U i−1),CT , kder, v
∗)

51 For all bc ∈ BC :
52 (v, pk ′,CT ,PKST(U i−1))← bc
53 U i ← U i ∪ {v}
54 PK ′τ [v]← pk ′
55 ksav ← k
56 kout ← prf(ksav, out)
57 ksav ← prf(ksav, sav)
58 sk0 ← sk1

59 i′ ← i+ 1
60 st ← (u, i′,PK ′τ ,SK ′u,U i, sk0, sk1, ksav)
61 Return (st, kout)

Figure 5.4: Construction of concurrent group ratcheting in the computational
model. CBT(n) calculates the number of nodes in a complete binary tree with n
leaves. getSNode(u,ST(U i−1)) finds the first node v on the direct path of u that
is in ST(U i−1).

198

5.6 Upper Bound of Communication Complexity

Receiving For rounds in which no member sent, the recipients forward-
securely derive symmetric keys (one output group key, and one saved
key) from last round’s secrets (lines 56-57). In addition, they assign
U i ← U i−1 (line 37), so that senders of subsequent rounds can refresh
the secrets of the senders of round i− 1.
In case members sent in a round, a receiver determines the first

message bc∗ among all sent in this round, via some definite order
(e.g., lexicographic). The receiver then retrieves from this message
the ciphertext set CT for decrypting the symmetric secret k and the
first seed needed to rebuild the tree: If the receiver sent in the last
active round (in which anyone sent), it uses its individual (fresh) secret
key (lines 43-44). Otherwise, it uses the secret key of the first node on
its direct path that is the child of some node in ST (U i−1) (lines 45-
48). The decrypted seed, as well as the rest of CT , and the public
keys of the Steiner Tree within bc∗ are then used to rebuild the secret
path for the receiver, as well as the public key tree, as described
below in paragraph Construction Subroutines (line 50). The resulting
symmetric secret is then used to derive the output group key and a
new saved key (as described above for rounds without ciphertexts).
Additionally, secret keys used to decrypt ciphertexts (including those

as described in the Construction Subroutines paragraph below), are
updated with the associated data that was also decrypted from the
respective ciphertexts (lines 48, 49, 80, 81). Finally, all senders of
the round are collected into U i and their new public keys are saved
(lines 51-54) in order to (later) achieve post-compromise security.

Construction Subroutines In the common initialization algorithm
init, a complete binary tree of n leaves with a public key at each node
is initialized using a list of corresponding secret keys SK init with pro-
cedure PK τ ← genPKTree(SK init) (line 03). Also, the secret keys
along the direct path to the root of leaf u for each user are retrieved
for that user, using SKu ← getSKPath(SK init, u).
Figure 5.5 details the subroutines for genSTree and Rebuild (lines 19

and 50). Subroutine genSTree is used in the snd algorithm to compute

199

5 Communication Costs of Ratcheting in Groups

the seeds and public keys at each node of the Steiner tree ST (U i−1)
using the seeds DK [v] sampled for the leaves v ∈ U i−1 (lines 15-18).
For each v ∈ U i−1, the receiver uses DK [v] to compute the node’s
secret key, public key, and (possibly) the seed to be used for its parent
(lines 66-69), continuing up the tree until there has already been a
seed generated for some node w on the path.

Rebuild is used in the rcv algorithm, by each user u to rebuild its
‘secret key path’ as well as the ‘public key tree’ using the public keys
of the Steiner Tree PKST(U i−1), the set of ciphertexts CT , and the
seed kder obtained from CT corresponding to a node v∗ in the tree.
First, for every v ∈ CST (U i−1), the receiver sets its public key to that
which is in the dictionary PKST(U i−1) (lines 73-74). Then, starting
from node v∗ using kder, the receiver derives the secret key for v∗ and
a new seed for its parent if the node is the left child of its parent.
Otherwise the receiver uses the secret key just derived to decrypt the
seed to be used at its parent (lines 76-82). The receiver continues up
the tree until the root is reached.

Proc genSTree(DK ,U i−1)
62 DKST(U i−1)[·]←⊥; PKST(U i−1)[·]←⊥
63 For each v ∈ U i−1 from left to right:
64 kder ← DK [v]
65 While DKST(U i−1)[v] = ⊥ and v 6= r:
66 DKST(U i−1)[v]← kder
67 k′der||sk

v ← prf(kder, der)
68 PKST(U i−1)[v]← gen(skv)
69 v ← v.p, kder ← k′der
70 Return (DKST(U i−1),PKST(U i−1))

Proc Rebuild(st,PKST(U i−1),CT , kder, v
∗)

71 (u, i,PK τ ,SKu,U i−1, sk0, sk1, ksav)← st
72 PK ′τ ← PK τ ; SK ′u ← SKu

73 For each v ∈ CST (U i−1):
74 PK τ [v]′ ← PKST(U i−1)[v]
75 v ← v∗

76 While v 6= r:
77 k′der||sk

v ← prf(kder, der)
78 SK ′u[v]← skv
79 If deg(v.p) = 2 and v = v.p.c1:
80 k′der||ad ← dec(skv,CT [v.p])
81 SK ′u[v]← up(skv, ad)
82 v ← v.p, kder ← k′der
83 Return (PK ′τ ,SK ′u)

Figure 5.5: Subroutines for construction upper bound. deg(v) refers to the degree
of a node v in a tree, i.e. number of children.

Lemma 1 For every round i ∈ [q], the communication costs in an
execution (n,U 0

X,U 1
S,U 1

X, . . . ,U 1
S,U

q
X) of the group ratcheting pro-

200

5.6 Upper Bound of Communication Complexity

tocol from figures 5.4 and 5.5 are

|C[i]| = O
(
|U i

S| · |U i−1
S | ·

(
1 + log

(
n

|U i−1
S |

)))
.

We note that |C[i]| denotes the number of sent items (i.e., cipher-
texts and public keys) per round. Their individual length depends on
the respectively deployed kuPKE scheme. (In a setting that defines a
security parameter, the factor with which the communication costs are
multiplied is (asymptotically) constant in this security parameter.)
The proof of Lemma 1 is a combination of arguments from Naor et

al. [NNL01], whose construction of broadcast encryption inspired our
group ratcheting scheme. It has not been contributed by the author
of this thesis. Hence, we refer the interested reader to the article on
which this chapter bases [BDR20b, BDR20c].

Theorem 6 (informal) Assuming secure kuPKE (as proposed in
[JMM19, ACDT20]) and a secure PRF, the construction of figures 5.4
and 5.5 is a secure group ratcheting scheme according to the forward-
secure variant of game KINDb

GR from Figure 5.1, with security loss at
most (qRound+1)·((dlog(n)e+1)·Advkind

PR (BPR)+dlog(n)e·Advkind
UE (BUE)),

where n is the number of group members, qRound is the number of ex-
ecuted rounds, and Advkind

PR (BPR), Advkind
UE (BUE) are upper bounds on

the advantage of any adversaries BPR, BUE against the security of PRF
and kuPKE, respectively.

The sketched strong security requirements for key-updatable PKE
in Section 5.4 are only permitted in our symbolic model to strengthen
the impact of our lower bound. For the security of our upper-bound
construction, formulated in the informal Theorem 6 above, a signifi-
cantly weaker variant of kuPKE suffices: it is not necessary to handle
a divergence between public and secret key of a key pair (due to in-
structed updates on different associated data). Additionally, ‘forward-
secrecy’ of updates (i.e., confidentiality of ciphertexts generated before
an update with respect to secret key exposures after the update) is

201

5 Communication Costs of Ratcheting in Groups

only required to be effective on associated data that the adversary
does not know. Due to these relaxations, this variant of kuPKE can
be instantiated efficiently from standard assumptions (see e.g., a con-
struction from DDH in [JMM19]).
The formal variant of Theorem 6 as well as its proof have not been

contributed by the author of this thesis. Hence, we refer the interested
reader to the article on which this chapter bases [BDR20b, BDR20c].

5.7 Lower Bound of Communication
Complexity

After giving an intuition of the lower bound in Section 5.5, we here
provide all details of the symbolic model and the lower bound proof
in it. We therefore shortly revisit the considered build blocks’ def-
initions and make the restrictions of their choice more transparent.
Subsequently, we introduce the formal definition of correctness and
security for group ratcheting in the symbolic model. We then for-
mulate the theorem for our lower bound and finally prove it in our
symbolic model.

5.7.1 Used Building Blocks

The lower bound proof bases on the formulation of derivation rules
that express the power of utilizable building blocks. According to these
rules it is shown that every secure and correct group ratcheting con-
struction, using these building blocks, cannot perform better in terms
of communication complexity than specified in the lower bound. As a
consequence, the selection of considered building blocks plays a crucial
role for the strength of the statement behind the lower bound. We
allow potential constructions to use (dual) pseudo-random functions,
public key encryption, key-updatable public key encryption (capturing
guarantees of hierarchical identity based encryption), and broadcast
encryption.
As mentioned in Section 5.5, our overall proof approach as well

202

5.7 Lower Bound of Communication Complexity

as the selection of allowed building blocks is inspired by the work
of Micciancio and Panjwani [MP04]. As their setting is similar to
ours, extending the power of selected building blocks in comparison
to their selection partially justifies our approach. Another indica-
tion that the considered building blocks do not (overly) restrict group
ratcheting constructions is that neither of the known previous con-
structions [CCG+18, BBM+20b, ACDT20, ACC+19a, ACJM20] bases
on stronger primitives than we consider here (symbolically).
We additionally explain why considering these primitives in our

proof is reasonable. We permit the use of dual pseudo-random func-
tions as they allow (group ratcheting) constructions to combine multi-
ple input secrets such that only one of them needs to be secure in order
to derive a secure output secret. Thereby potentially secure fresh se-
crets can be mixed with potentially secure old secrets to derive secure
new secrets. For explaining the consideration of kuPKE, we refer to
our result from Chapter 4 that proves equivalence of key-updatable
KEMs (which are related to kuPKE in terms of syntax and security)
and optimally secure two-party ratcheting. For constructions of (sub-
optimal) group-ratcheting the use of kuPKE should consequently be
allowed. With our strengthened notion of kuPKE that also captures
HIBE we are in line with the recently and concurrently proposed opti-
mally secure group ratcheting construction [ACJM20] that makes use
of HIBE. Finally, since our upper bound construction makes use of
broadcast encryption concepts, we also allow the use of this primitive
for constructions in our symbolic model.
In the following we comprehensibly reintroduce the grammar and

derivation rules for all considered building blocks, already provided at
once in Section 5.2, one after another.

We first describe the underlying basic rules within our symbolic
model that are independent of the building block primitives that we
consider. For all following definitions, those defined here always apply.

Grammar Of the four basic types of symbols messages can be secret
keys, secret keys can be symmetric keys, and symmetric keys can be

203

5 Communication Costs of Ratcheting in Groups

random coins (the latter being a terminal type). More formally:

1. M 7→ SK 2. SK 7→ K 2. K 7→ R

Derivation Rules Our derivation rules can be read as follows: For
a set of symbols M , M ` m means that m can be derived from the
elements in set M , which is stated by the following rule:

a) m ∈M =⇒ M ` m

Pseudo-Random Functions From the syntax definition of pseudo-
random functions, keys in set K are of type K and associated-data
inputs in set AD are of type M . Accordingly, grammar rule 3. is
modified to model that symmetric keys can be random coins or the
outputs of the (dual) pseudo-random function10:

3. K 7→ R|prf(K,M)|dprf({K,K})

For (symbolic) security, we define that the output key of a (dual) PRF
can be derived from a set if the respective secret inputs can be derived
from it as well:

b) M ` k =⇒ ∀ad M ` prf(k, ad)

c) M ` k1, k2 =⇒ M ` dprf({k1, k2})

Public Key Encryption Before introducing the more complex
primitives kuPKE and BE, we begin with normal public key en-
cryption. A public key encryption scheme PE is a triple of algo-
rithms PE = (gen, enc, dec) such that:

• gen(sk) → pk where sk is of type SK and for public keys pk
type PK is introduced

• enc(pk,m)→$ c where m and c are of type M
10In order to reduce complexity, we neither explicitly introduce a function that

maps two keys to a set of these two keys, nor a special type that depicts the
set of two keys.

204

5.7 Lower Bound of Communication Complexity

• dec(sk, c)→ m
In order to include PKE into the symbolic grammar, we provisionally
change the first and add a fourth rule to model that 1.’ messages can be
secret keys, public keys, and ciphertexts (obtained from encryptions of
messages), and 4. public keys are outputs of the public key generation
of secret keys:

1.’ M 7→ SK |PK |enc(PK ,M)

4. PK 7→ gen(SK)

We furthermore provisionally add derivation rule d’) to model that,
if a secret key and a ciphertext, encrypted to its public key, can be
derived from the set of symbols, then also the message, encrypted in
this ciphertext, can be derived from it.

d’) M ` enc(pk,m), sk : pk = gen(sk) =⇒ M ` m

This rule will be incrementally generalized due to the consideration of
the following primitives.

Key-Updatable Public Key Encryption In the syntax of kuPKE
only update algorithm up is added compared to normal PKE. Accord-
ingly, we change the second and fourth grammar rules to model that
updated public keys and secret keys can be parsed as public and secret
keys respectively:

2. SK 7→ K|up(SK ,M)

4. PK 7→ gen(SK)|up(PK ,M)

For simplicity, our symbolic grammar and derivation rules treat all al-
gorithms of public key encryption, key-updatable public key encryp-
tion, and broadcast encryption with analog syntax uniformly (e.g.,
public keys of key-updatable public key encryption can be used to
broadcast encrypt), which strengthens our results.
To model the decryptability of ciphertexts and the update of secret

keys, we adapt rule d’) to more general rule d”) (and simplify its

205

5 Communication Costs of Ratcheting in Groups

notation with helper function Fit in the next paragraph) and add
another rule. A message, encrypted to the public key pks of a secret
key sks in ciphertext c can be derived from the set of symbols M
if both c and some secret key skr can be derived from M and sks
can be derived from skr (e.g., via secret key updates). Furthermore,
an updated secret key can be derived from the set of symbols if the
respective input secret key can be derived from it:

d”) ∃sk0, (ad0, . . . , ads−1) ∧M ` enc(pks,m), skr : pk0 = gen(sk0),
s ≥ r ≥ 0,∀i ∈ [s− 1] pki+1 = up(pki, adi),∀i ∈ [r − 1] ski+1 =
up(ski, adi)
=⇒ M ` m

e) M ` sk =⇒ ∀ad M ` up(sk, ad)

We emphasize that the update with respect to associated data resem-
bles HIBE secret key delegation with respect to identity strings. For
HIBE encryption, instead of having the identity vector as a parameter,
the matching public key can be derived via according updates.

Broadcast Encryption In addition to the algorithms of PKE and
kuPKE, broadcast encryption defines a registration algorithm reg with
which secret keys can be registered from a (main) secret key. Further-
more, the encryption algorithm is extended by an input parameter
that determines the set of excluded users whose registered secret keys
should not be able to decrypt the encrypted payload.
In order to easily and comprehensibly adapt the grammar rules,

we finalize provisional rule 1.’ by adding a set parameter to the
encryption—an empty set symbol S(N) = ∅ specifically models PKE
and kuPKE ciphertexts, and a non-empty set of integer symbols ∅ 6=
S(N) models ciphertexts broadcast to the complementary subset of
potential recipients. Additionally, rule 2. now includes the registra-
tion of secret keys from (main) secret keys:

1. M 7→ SK |PK |enc(PK ,S(N),M)

2. SK 7→ K|up(SK ,M)|reg(SK ,N)

206

5.7 Lower Bound of Communication Complexity

In order to simplify notation, we do not introduce another abstract
type for describing user identities as input to the encryption or reg-
istration algorithm. Instead, we use N to denote user identities here,
dissociating it from its mathematical (non-symbolic) structure.
For modeling decryption of broadcast ciphertexts, we present provi-

sional rule d”’) only to simplify all decryption rules under subsumed
rule d): If a ciphertext and a secret key can be derived from a set
of symbols, and the ciphertext was encrypted to a public key that is
compatible with this derived secret key (which is validated by func-
tion Fit), then the encrypted message can be derived from the set of
symbols as well. In addition to that, for every (main) secret key deriv-
able from the set of symbols, also all secret keys that can be registered
with it are derivable:

d”’) ∃u /∈ RM ∧M ` enc(mpk,RM ,m), sk : mpk = gen(msk),
sk = reg(msk, u) =⇒ M ` m

d) M ` enc(pk,RM ,m), sk : Fit(pk,RM , sk) =⇒ M ` m

f) M ` sk =⇒ ∀u M ` reg(sk, u)

Since we use this predicate multiple times within our proof, we
formulate the compatibility of a secret key and a public key with the
following predicate and thereby simplify rules d”) and d”’) to rule d):

Fit(pks,RM , skr) =
(
∃sk ′0, (ad0, . . . , ads−1), u /∈ RM : pk0 = gen(sk ′0),
s ≥ r ≥ 0,∀i ∈ [s− 1] pki+1 = up(pki, adi),
∀i ∈ [r − 1] sk ′i+1 = up(sk ′i, adi),
(skr = sk ′r ∨ (skr = reg(sk ′r, u) ∧ s = r))

)
This predicate defines a public key pks with a set of integers RM
compatible with a secret key skr, if public key and secret key originate
from some initial secret key sk ′0 such that either skr was derived from
updates under a prefix of the associated-data vector under which pks
was derived, or both were updated under the same associated-data
vector and skr was subsequently registered under an integer that is
not in set RM .

207

5 Communication Costs of Ratcheting in Groups

Derivation of Public Values In addition to the deriving rules that
describe how to recover secret values, we add three additional rules
that describe how public values can be derived:

g) M ` sk =⇒ M ` gen(sk)

h) M ` pk =⇒ ∀ad M ` up(pk, ad)

i) M ` pk,m =⇒ ∀RM M ` enc(pk,RM ,m)

Overall Definitions We define the set of symbols that can be de-
rived (and recovered) from a set M using ` according to our derivation
rules as Der(M).

5.7.2 Group Ratcheting

Syntax and its mapping to the symbolic model of group ratcheting are
already defined in sections 5.2 and 5.5.2, respectively. We remind the
reader that inputs and outputs of group ratcheting algorithms init,
snd, and rcv are random coins in the form of sets of type R symbols,
local user states and ciphertexts in the form of sets of typeM symbols,
and group keys in the form of type K symbols.
The context of each element in the local state and in ciphertexts

(e.g., sender of ciphertexts, etc.) is assumed to be implicitly known
by the processing algorithms (and thus outside our model).

Correctness We define correctness via Figure 5.6, for which we
require that Pr[FUNCGR(n,U 1

S, . . . ,U
q
S) → 1] = 0 for all n, q ∈ N2

and all U i
S ⊆ [n] for every i ∈ [q]. Intuitively, this means that after

every round i in which all users in set U i
S are active, the computed

keys of all group members in set [n] are equal.
Additionally, we only consider constructions that allow for symbolic

adversaries: that is, all outputs of an algorithm invocation must be
derivable via Der according to rules a)-i) from its inputs.11

11Note that this condition excludes constructions that encode data, necessary for
the derivation, inside the algorithm specification.

208

5.7 Lower Bound of Communication Complexity

By requiring that the outputs OUT of group ratcheting construc-
tions’ algorithms are derivable via Der from their inputs IN, also ‘in-
verse derivation guarantees’ are implied: for each symbol x ∈ OUT
it holds that x ∈ IN, or x is encrypted in a ciphertext that can be
obtained from IN, or that the symbols from which x is directly deriv-
able are derivable from IN as well (e.g., for x = prf(k, ad) it holds
that IN ` k). For clarity we make these inverse derivation guarantees
explicit in Section 5.7.6.

Game FUNCGR(n,U 1
S, . . . ,U

q
S)

00 r ←$ R; symb ← 1
01 (st1, . . . , stn)← init(n; r)
02 If ∃u ∈ [n] : stu * Der({n} ∪ r):
03 Stop with 1
04 For i from 1 to q:
05 Call Round(U i

S)
06 Stop with 0

Proc Round(U)
07 Require U ⊆ [n]
08 For all u ∈ U :
09 ru ←$ R
10 der ← Der(stu ∪ ru)
11 (stu, cu)← snd(stu; ru)
12 If stu ∪ cu * der : symb ← 0
13 c ←

⋃
u∈U cu

14 For all u ∈ [n]:
15 der ← Der(stu ∪ c)
16 (stu, ku)← rcv(stu, c)
17 If stu ∪ {ku} * der : symb ← 0
18 If ∃u ∈ [n] : ku 6= k1∨symb = 0
19 Stop with 1
20 Return

Figure 5.6: Correctness definition of concurrent group ratcheting. Gray marked
lines force the construction to allow for symbolic attackers. Note that we treat
random coins, instances’ states, and ciphertexts as sets (and not single elements)
of types R and M , respectively.

Security In Figure 5.7 we show the execution of a symbolic adver-
sary, representing the symbolic security definition. It lets an attacker
choose the active instances (i.e., those that send in a round) and the set
of exposed instances per round. Depending on these choices, a com-
puted group key in round i is marked insecure if previously exposed
group members did not yet contribute new information (by sending)
until round i, or after they contributed but until and including round i
no user integrated these new contributions into the computation of a

209

5 Communication Costs of Ratcheting in Groups

new common secure group key (by responding) in order to recover
from their exposures, or a user was exposed after round i.

Line 26 accordingly declares a key secure 1. if in the current round no
instances were exposed (i.e., all exposed instances sent once after their
exposure) and 2.a. if either the key in the previous round was already
secure or 2.b. if any instance was active in the current round (i.e., after
all exposed instances sent at least one instance reacted by sending as
well). This reflects that the group recovers from exposures if the
exposed instances were active at least once after their exposure (see
line 28) and if afterwards anyone was active in the group to integrate
the new contribution of the exposed instance for computing a secure
group key.12

Furthermore, line 35 declares all past keys insecure after an exposure
such that no forward-secrecy is required. As mentioned before, we only
introduce this restriction to show that our lower bound solely bases on
required post-compromise security under concurrent sending in group
ratcheting.
A group ratcheting scheme is considered insecure if any securely

marked key can be derived from all sent ciphertexts in combination
with all exposed states via function Der in the symbolic setting (see
line 14).
All random coins, generated during the game, are of terminal typeR,

and are generated independently such that neither can be derived from
the others: ∀r ∈ ⋃i∈[q],u∈[n] R[i, u] r /∈ Der(⋃i∈[q],u∈[n] R[i, u] \ {r}).

Definition 1 A group ratcheting scheme GR is symbolically secure
and correct if for all n, q ∈ N and all U i

S ⊆ [n] for every i ∈ [q]+
it holds that Pr[FUNCGR(n,U 1

S, . . . ,U
q
S) → 1] = 0 according to Fig-

ure 5.6, and if for all n, q ∈ N and all U i
S ⊆ [n],U j

X ⊆ [n] for every
i ∈ [q]+, j ∈ [q] it holds that Pr[SYMGR(n,U 0

X,U 1
S,U 1

X, . . . ,U
q
S,U

q
X)

12We note that this is not optimally secure in case only one instance is exposed:
Then this single exposed instance could simultaneously contribute new informa-
tion and compute a new secure common group key. For the purpose of proving
a lower bound on communication complexity, this relaxation strengthens our
statement.

210

5.7 Lower Bound of Communication Complexity

Game SYMGR(n,U 0
X,

U 1
S,U 1

X, . . . ,U
q
S,U

q
X)

00 XU ← ∅; SEC ← ∅
01 XST ← ∅; C ← ∅
02 XST[·]← ∅; C[·]← ∅
03 K[·]← ⊥; R[·, ·]← ∅
04 STS[·, ·]← ∅; STR[·, ·]← ∅
05 r ←$ R; R[0, ·]← r
06 (st1, . . . , stn)← init(n; r)
07 For all u ∈ [n]:
08 STR[0, u]← stu
09 Call Expose(U 0

X)
10 For i from 1 to q:
11 Call Round(U i

S)
12 Call Expose(U i

X)
13 C ←

⋃
j∈[q] C[i]

14 If ∃i′ ∈ SEC :
K[i′] ∈ Der(C ∪XST):

15 Stop with 1
16 Stop with 0

Proc Round(U)
17 Require U ⊆ [n]
18 For all u ∈ U :
19 ru ←$ R; R[i, u]← ru
20 (stu, cu)← snd(stu; ru)
21 STS[i, u]← stu
22 C[i]← ⋃

u∈U cu
23 For all u ∈ [n]:
24 (stu, ku)← rcv(stu,C[i])
25 STR[i, u]← stu
26 If XU = ∅ ∧ (U 6= ∅
∨i− 1 ∈ SEC):

27 SEC ← {i}
28 XU ← XU \U
29 K[i]← k1
30 Return

Proc Expose(U)
31 Require U ⊆ [n]
32 XU ← XU ∪U
33 XST[i]← ⋃

u∈U stu
34 XST ← XST ∪XST[i]
35 SEC ← SEC \ [i− 1]
36 Return

Figure 5.7: Security definition of concurrent group ratcheting in our symbolic
model. Everything marked gray is only included for simplifying the proof termi-
nology but is irrelevant for the security definition.

→ 1] = 0 according to Figure 5.7.

Communication Costs Communication costs in round i are |C[i]|.
One can further consider communication costs until round i
(∑j∈[i] |C[j]|) and amortized communication costs per round until
round i (∑j∈[i] |C[j]|/i).

Relation to Previous Lower Bound The setting that we are
modeling is conceptually similar to the one considered by Micciancio
and Panjwani [MP04] for their lower bound analysis of group key ex-
change. One could therefore hope for similar lower bounds of commu-
nication complexity (i.e., log(n) ciphertexts per operation) for group
ratcheting. The crucial difference is, however, that their lower bound
bases on forward-secrecy requirements of group key exchange whereas
we require no form of forward-secrecy in our model and prove the lower

211

5 Communication Costs of Ratcheting in Groups

bound based on post-compromise security requirements. Communica-
tion complexity under combined forward-secrecy and post-compromise
security requirements may therefore increase both bounds accordingly.
We leave the analysis of this to future work.

5.7.3 Lower Bound

Within the above defined framework we formulate the lower bound of
communication complexity.

Theorem 7 (Lower Bound) Let GR be a group ratcheting scheme,
secure and correct according to Definition 1. For every round i ∈ [q]
the communication costs in an execution (n,U 0

X,U 1
S,U 1

X, . . . ,U
q
S,

U q
X), according to Figure 5.7, are |C[i]| ≥ |U i

S| · (|U i−1
S | − 1).

The proof of Theorem 7 proceeds in four steps:

1. We use exposures in round i − 2 to show that exposed senders
in round i − 1 have no common useful secrets until the end of
round i− 1.

2. We then show that, in order to compute a common useful secret
in the group (i.e., a secure group key) in round i, a single sender
in round i must send as many ciphertexts as the number of
exposed users in round i− 2 that sent in round i− 1.

3. In the next step we show that all senders in round i must do
the same and thereby send equally many ciphertexts.

4. We finally show that the behavior of senders in rounds i − 1
and i is independent of exposures in round i−2. This concludes
the proof.

Terminology

Before we formally prove Theorem 7, we introduce and define terms
to simplify the notation in our lower bound proof:

212

5.7 Lower Bound of Communication Complexity

• Communication up to round i: COi
..= Der(⋃j∈[i] C[j])

• Secrets are elements that are of types SK , K, or R.
Via function Sec(IN)→ OUT a set of elements IN of arbitrary
type is reduced to the set OUT of those elements that are of
the aforementioned types (i.e., OUT ⊆ IN such that exactly
those elements x ∈ IN of type SK , K, or R are in set OUT).

• Useless secrets represent all the knowledge on secrets that an
attacker can gain up to a certain point during the protocol ex-
ecution from sent ciphertexts and exposed user states. Useful
secrets represent secrets that can be derived from ciphertexts
sent and random coins generated up to a certain point during
the protocol execution that are not useless. Below we specify
three types of useless and useful secrets with respect to time
slots during the protocol execution within rounds (before and
after sending, and after exposures in a round).

• Useless secrets before sending in round i:
USS[i] ..= Sec(Der(⋃j∈[i−1] XST[j] ∪COi−1)).

• Useless secrets after sending in round i:
USR[i] ..= Sec(Der(⋃j∈[i−1] XST[j] ∪COi)).

• Useless secrets after exposure in round i: USX[i] = USS[i+ 1].
• Useful secrets before sending in round i:

USS[i] ..= Sec(Der(⋃j∈[i],u∈[n] R[j, u] ∪COi−1)) \USS[i].
• Useful secrets after sending in round i:

USR[i] ..= Sec(Der(⋃j∈[i],u∈[n] R[j, u] ∪COi)) \USR[i].
• Useful secrets after exposure in round i:

USX[i] ..= USR[i] \USX[i].
• Compatible secrets are secrets of which either can be derived

from the other, or secrets that are registered from the same
main secret key. We therefore define the compatible intersection
operator ×∩ as follows:
A ×∩ B ..= {x | x ∈ A ∩ B ∨ ∃msk, u, v : (x = reg(msk, u), y =
reg(msk, v), x ∈ A ∧ y ∈ B ∨ x ∈ B ∧ y ∈ A)}

213

5 Communication Costs of Ratcheting in Groups

5.7.4 Proof of Lower Bound

For the proof we successively analyze the symbolic derivations ahead
of and responsible for obtaining a group key in round i, inducing the
lower bound of communication complexity. We begin with derivable
symbols at the beginning of round i− 1.

Round i−1 At the beginning of round i−1 (before sending) it holds
by definition that each user’s random coins in round i−1 (all all secrets
derivable from them) cannot be derived from any other random coins
up to that round (including respectively compatible secrets):

∀u∗ ∈ [n] Der(
⋃

j∈[i−2],u∈[n]
R[j, u] ∪

⋃
u∈[n]\{u∗}

R[i− 1, u])

×∩ Der(R[i− 1, u∗]) = ∅

We now formulate Lemma 2 that generically expresses which secrets
can and, more importantly, cannot be derived by exposed users. Intu-
itively it says that, after being exposed and sampling new secret ran-
dom coins, a user u∗ cannot derive useful secrets that are compatible
with any other user’s useful secrets. More precisely, taking the exposed
symbols in a local state of user u∗ (represented by subset X∗) that
were derived from independent random coins (represented by set X
with X∗ ⊆ Der(X)) and unifying them with u∗’s newly generated se-
cret random coins (represented by set Y) will not derive useful secrets
that are compatible with useful secrets derived from these independent
random coins (i.e., (Der(X∗ ∪ Y) ∩US) ×∩ (Der(X) ∩US) = ∅).

Lemma 2 Let sets X,X∗, Y,US exist with Der(X) ×∩ Der(Y) = ∅,
X∗ ⊆ Der(X), Der(X∗) ∩US = ∅, Der({x1, x2}) ∩US 6= ∅ implies
{x1, x2} ∩ US 6= ∅, and all elements in sets X,Y are of terminal
type R. Then it holds in our symbolic model that (Der(X) ∩US) ×∩
(Der(X∗ ∪ Y) ∩US) = ∅.

We prove Lemma 2 in Section 5.7.5.
According to Lemma 2 the following is implied (where Y are the

random coins of user u∗ in round i − 1, X is the set of remaining

214

5.7 Lower Bound of Communication Complexity

random coins up to that round, and X∗ is the set of useless secrets at
the beginning of round i− 1):

∀u∗ ∈ [n] Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}
R[i− 1, u]

×∩ Der(R[i− 1, u∗]) = ∅

=⇒ ∀u∗ ∈ [n] Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}
R[i− 1, u]

∩USS[i− 1]
×∩ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1] = ∅

As public keys pk are not of a terminal type, for all pk ∈
Der(⋃j∈[i−2],u∈[n] R[j, u] ∪ ⋃u∈[n]\{u∗}R[i − 1, u]) there must exist a
sk in the same set such that pk ∈ Der(sk) according to derivation
rules g) and h) with their inverse derivation guarantees and grammar
rule 4. Since, furthermore, there exist no compatible useful secrets
between the random coins of u∗ in round i− 1 (together with useless
secrets) and the remaining random coins up to round i− 1 (as shown
above), no pk is derivable from these remaining random coins such
that the respective sk is useful and derivable by u∗ at the beginning
of round i − 1 (with its current random coins and useless secrets).
Otherwise sk would be a shared useful secret:

∀u∗ ∈ [n] @pk ∈ Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}
R[i− 1, u]

 :

Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1])
∩USS[i− 1]

In order to derive a ciphertext from a set of terminal symbols, the
public key to which this ciphertext is encrypted must be derivable from
that set, too (according to rule i) and its inverse derivation guarantee).

215

5 Communication Costs of Ratcheting in Groups

Hence, neither a ciphertext encrypted to a useful secret key of user u∗
(derivable from its random coins in round i − 1 and useless secrets)
can be derived by the remaining users (from their random coins up
to round i − 1). This finally induces that no useful secrets can be
transmitted from these remaining users to user u∗ by encrypting them
in round i− 1:

∀u∗ ∈ [n] @pk ∈ Der(
⋃

j∈[i−2],u∈[n]
R[j, u] ∪

⋃
u∈[n]\{u∗}

R[i− 1, u]) :

Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1])
∩USS[i− 1]

=⇒ ∀u∗ ∈ [n] @c ∈ Der(
⋃

j∈[i−2],u∈[n]
R[j, u] ∪

⋃
u∈[n]\{u∗}

R[i− 1, u]) :

c = enc(pk,RM ,m),Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

=⇒ ∀u∗ ∈ [n] @c ∈ C[i− 1] \ cu∗ :
(stu∗ , cu∗)← snd(STR[i− 2, u∗]; R[i− 1, u∗]),
c = enc(pk,RM ,m),Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

=⇒ ∀u∗ ∈ [n] @k : c = enc(pk,RM , k), c ∈ C[i− 1] \ cu∗ ,
(stu∗ , cu∗)← snd(STR[i− 2, u∗]; R[i− 1, u∗]),
Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

Now, since (5.1) users cannot derive compatible useful secrets from
their random coins in round i − 1 together with useless secrets, and
(5.2) the ciphertexts in this round are themselves a subset of useless
secrets and (5.3) contain no encrypted useful secrets, these users can
neither derive compatible useful secrets after receiving the ciphertexts
in round i−1 (if they only use their current random coins plus useless

216

5.7 Lower Bound of Communication Complexity

secrets for derivation; see Equation 5.4):

∀u1, u2 ∈ [n], u1 6= u2

Der(R[i− 1, u1] ∪USS[i− 1])
×∩ Der(R[i− 1, u2] ∪USS[i− 1]) ∩USS[i− 1] = ∅ (5.1)

∧ Sec(Der(C[i− 1] ∪USS[i− 1])) ⊆ USR[i− 1] (5.2)
∧ @k : c = enc(pk,RM , k), c ∈ C[i− 1] \ cu∗ , u∗ ∈ {u1, u2},

(stu∗ , cu∗)← snd(STR[i− 2, u∗]; R[i− 1, u∗]),Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1] (5.3)

=⇒ ∀u1, u2 ∈ [n], u1 6= u2

Der(R[i− 1, u1] ∪USR[i− 1])
×∩ Der(R[i− 1, u2] ∪USR[i− 1]) ∩USR[i− 1] = ∅ (5.4)

It must be noted that in order to derive a (common) useful secret via
a dual PRF invocation, the two inputs must be known to each user
and one input must be a useful secret. Since no compatible useful
secrets exist under the aforementioned conditions, and a transmission
via ciphertexts makes the transmitted value useless (since ciphertexts
themselves are useless and under the above conditions contain no use-
ful secrets), neither of the inputs of a dual PRF can be both a useful
secret and derivable from both users’ current random coins and useless
secrets.
We thereby conclude that at the end of round i−1 all users, exposed

in round i−2, share no compatible useful secrets, independent of who
sent in round i−1: ∀u1, u2 ∈ U i−2

X , u1 6= u2 Der(STR[i−2, u1]∪R[i−
1, u1]∪C[i−1]) ×∩ Der(STR[i−2, u2]∪R[i−1, u2]∪C[i−1])∩USR[i−
1] = ∅.

Beginning of Round i The state of a user at the end of round i−1
is a subset of what can be derived from the union of its state from the
previous round, random coins generated in round i − 1, and cipher-
texts received in this round. Consequently, at the end of round i− 1
the states of two users, exposed in round i − 2, neither contain com-
patible useful secrets. The random coins, generated at the beginning

217

5 Communication Costs of Ratcheting in Groups

of round i, are independent for all users and consequently neither
contribute information for deriving compatible secrets:

∀u1, u2 ∈ U i−2
X , u1 6= u2

Der(STR[i− 2, u1] ∪ R[i− 1, u1] ∪ C[i− 1])
×∩ Der(STR[i− 2, u2] ∪ R[i− 1, u2] ∪ C[i− 1])
∩USR[i− 1] = ∅

=⇒ ∀u1, u2 ∈ U i−2
X , u1 6= u2

Der(STR[i− 1, u1] ∪ R[i, u1])
×∩ Der(STR[i− 1, u2] ∪ R[i, u2]) ∩USS[i] = ∅

Graph Interpretation We now represent useful secrets and their
derivation in a graph such that each useful secret is a node and the
derivation of one useful secret from another is a directed edge between
them. By distinguishing between derivation via (dual) PRF invoca-
tions, secret key updates, and secret key registrations on the one hand
and derivation via decryption on the other hand, we obtain the num-
ber of ciphertexts during sending in round i (i.e., the communication
complexity). Before formally defining this graph, we give an intuition
for its components:

• Key graph in round i is a directed graph in which all useful
secrets are represented as nodes. These nodes are connected by
either given edges or communication edges, both modeling the
ability to derive one secret, represented by the destination node,
from (an)other secret(s), represented by the source node.

• Given edges model the derivation of secrets via (dual) PRF in-
vocations (k2 = prf(k1, ad) or k2 = dprf({k1a, k1b})), secret key
updates (sk2 = up(sk1, ad)), or secret key registration (sk2 =
reg(sk1, u)) such that the respective output secret (k2 or sk2) is
represented by the destination node and the input secret(s) (k1,
one of {k1a, k1b}, or sk1) is/are represented by the source node.
Neither (dual) PRF invocations nor secret key updates require
communication over the broadcast for the derivation of a secret
(hence ‘given’ edges).

218

5.7 Lower Bound of Communication Complexity

The derivation via dual PRF is represented by an edge that has
as source node only one of the two (useful) input secrets.13

• Communication edges model the derivation of secrets due to the
ability of decrypting them from the broadcast communication.
That means for a ciphertext c = e0(enc(pk1,RM , e1(k2))) with
Fit∗(pk1, sk1) the useful secret key sk1 can be used to derive use-
ful secret k2. The encrypted secret k2 is thereby represented by
the destination node, the decryption (secret) key sk1 is repre-
sented by the source node, and the respective ciphertext c from
the communication up to round i (containing the encrypted se-
cret) is represented by the edge itself. In order to ensure that
each ciphertext is represented in the graph at most once (such
that the graph can be used to measure communication com-
plexity), only the inner most useful encryption (i.e., decryptable
under a useful secret and encrypting a useful secret) within po-
tential nested sequences of encryptions (e0 and e1) is considered
as a communication edge.14

In order to simplify the representation of broadcast encryption
ciphertexts in a consistent manner, decryption with useful regis-
tered secret keys is mapped onto decryption with their (useful)
main secret keys. Therefore, predicate Fit∗ ignores registered
secret keys in the declaration of compatibility between public
and secret keys.15

In Figure 5.8 we illustrate how given edges (left) and communication
edges (right) in the key graph relate to the derivation of useful secrets.
For communication edges one can see that a ciphertext, containing an
encrypted useful registered secret key, is represented (and substituted)

13Since both input secrets must be known by a user to derive the output secret, it
is sufficient to pick one of the two input secrets for representation. As the key
graph only includes useful secrets, the represented input secret must be useful.

14Note that our graph includes a representation of all ciphertexts up to round i
and not only those that are sent during round i.

15We note that this only changes the destination node of edges in the graph. The
number of (sent) ciphertexts and the derivation of useful secrets is still modeled
consistently.

219

5 Communication Costs of Ratcheting in Groups

by a ciphertext that encrypts this secret key’s main secret key instead.
Together with the following predicate Fit∗, this consistently maps all
derivations on (communication) edges in the tree without changing
the number of edges or disrupting the derivation of useful secrets.

b) k2 = prf(k1, ad)

k1 k2
ad

e) sk2 = up(sk1, ad)

sk1 sk2
ad

f) sk2 = reg(sk1, u)

sk1 sk2
u

c) k2 = dprf({k1a, k1b})
either or

k1a k1b

k2

k1b k1a

k1b k1b

k2

k1b k1a

d) c = e0(enc(pk1,RM , e1(k∗))),Fit∗(pk1, sk1)
@sk∗, u : k∗ = reg(sk∗, u) k∗ = reg(k2, u)

sk1

k∗

c

sk1

k2 k∗

c c

u

Edge in graph representing derivation:
Edge in graph representing substituted derivation:

Edge not in graph (derivation not represented as edge):

Figure 5.8: Mapping between derivation of useful secrets and their realization in
the key graph as given edges (left) and communication edges (right).

The compatibility predicate that neglects registered secret keys is
simply defined as follows:

Fit∗(pks, skr) =
(
∃sk0, (ad0, . . . , ads−1) : pk0 = gen(sk0), 0 ≥ s ≥ r,
∀i ∈ [s− 1] pki+1 = up(pki, adi),
∀i ∈ [r − 1] sk ′i+1 = up(ski, adi)

)
Based on this, we define the key graph:

Definition 2 (Key Graph) The key graph up to round i is a graph
Gkg
i = (Vi, Egiv

i ∪Ecom
i), where Vi = USR[i], the set of given edges Egiv

i

contains an edge from one useful secret to another useful secret if the
latter can be derived from the former via a (dual) PRF invocation (i.e.,
k2 = prf(k1, ad) or k2 = dprf({k1a, k1b})), via a secret key update
(i.e., sk2 = up(sk1, ad)), or via a secret key registration (i.e., sk2 =

220

5.7 Lower Bound of Communication Complexity

reg(sk1, u)):

Egiv
i ={(k1, k2) ∈ V2

i | ∃ad : k2 = prf(k1, ad)} ∪ {(k1a, k2) ∈ V2
i |

k2 = dprf({k1a, k1b}), k1b ∈ Vi ∪USR[i], (k1b, k2) /∈ Egiv
i }

∪ {(sk1, sk2) ∈ V2
i | ∃ad : sk2 = up(sk1, ad)
∨ ∃u : sk2 = reg(sk1, u)},

and the set of communication edges Ecom
i contains an edge from one

useful secret to another if the latter is, within nested sequences e0
and e1 of encryptions, encrypted under the public key of the former
(i.e., c = e0(enc(pk1,RM , (e1(k2))) with Fit∗(pk1, sk1)), unless there
exists another encryption to a useful secret within the inner sequence
(i.e., there exist enc(pk∗,RM ∗, ·) with Fit∗(pk∗, sk∗) and sk∗ ∈ Vi
within e1):

Ecom
i = {(sk1, k2) ∈ V2

i | c ∈ COi, c = e0(enc(pk1,RM , e1(k∗))),
Fit∗(pk1, sk1), eb = e1

b ◦ · · · ◦ e
lb
b , b ∈ {0, 1}, lb ∈ N

0,

exb = enc(pkx,RM x, ·), x ∈ [lb],
@y ∈ [l1] : ey1 = enc(pky,RM y, ·),Fit∗(pky, sky), sky ∈ Vi,
(k2 = k∗ ∧ @sk∗, u : k∗ = reg(sk∗, u) ∨ ∃u : k∗ = reg(k2, u))}.

We now let the sets of exposed users in round i − 2 and senders
in round i − 1 equal (i.e., U i−2

X = U i−1
S) such that |U i−1

S | > 1 and
|U i

S| > 0. Furthermore we let no user being exposed in any other
round (i.e., U j

X = ∅ for all j 6= i − 2). (At the end of the proof we
show that no conditions for the sets of exposed users must be enforced
in order for the lower bound to hold. We note that the remaining two
conditions on the sender set cardinality only exclude the case in which
the lower bound collapses to 0.)
As a consequence of these (preliminary) conditions there exists a

(cycle-free) path Pi[u] for every user u ∈ U i−1
S from a node that

represents either R[i− 1, u] or R[i, u] (the latter only if also u ∈ U i
S)

to the common group key K[i] in Gkg
i . This holds because under

the above described conditions K[i] is declared secure (as all exposed

221

5 Communication Costs of Ratcheting in Groups

users sent once and obtained a response). Consequently K[i] must be
a useful secret for all secure constructions, derivable for exposed users
only through their random coins from the past two rounds (being the
only origin of their useful secrets).
From these paths Pi[u] = (Vpath

i [u], Epath
i [u]) we build a (poly)tree

T path
i = (⋃u∈U i−1

S
Vpath
i [u],⋃u∈U i−1

S
Epath
i [u]) that models the deriva-

tion of the group key (represented as the common leaf) from each
exposed user’s random coins (represented as individual ‘roots’ respec-
tively). Without loss of generality, we assume that this (poly)tree is
free of cycles.
We now remove all edges ecom

i that represent ciphertexts sent in
round i from this graph:
Gpath−com
i = (⋃u∈U i−1

S
Vpath
i [u],⋃u∈U i−1

S
Epath
i [u] \ (Ecom

i \ Ecom
i−1)).

In this resulting graph Gpath−com
i , each exposed user’s path is trun-

cated (from the common group key leaf towards each individual root
random coins) such that only those useful secrets lay with represen-
tatives on their path that were derivable before receiving in round i. In
addition to these truncated and thereby disjunct paths, graph Gpath−com

i

may contain nodes representing useful secrets (and potentially edges
between them that model their derivability) that were generated by
other users (who did not send in round i−1) and are derivable by the
exposed users only though the ciphertexts sent in round i.

From graph Gpath−com
i we extract all weakly connected sub-graphs

(i.e., each exposed user’s truncated, disjunct path and all remaining
weakly connected sub-graphs) and represent each of them as a node in
set Vnode

i . Nodes in set Vnode
i that represent an exposed user’s trun-

cated, disjunct path are called user-nodes. These truncated paths,
represented by user-nodes, are indeed not connected by a common
node since such a common node would otherwise represent a compati-
ble useful secret at the beginning of round i. Consequently, the size of
the set of user-nodes Vusen

i is |Vusen
i | = |U i−1

S | with Vusen
i ⊆ Vnode

i . We
furthermore call the node in set Vnode

i that represents the sub-graph
in which the representation of group key K[i] is contained key-node v∗i .
Since the key-node can also be a user-node, the number of user-nodes

222

5.7 Lower Bound of Communication Complexity

that are not the key-node is |Vusen
i \ {v∗i }| ≥ |U

i−1
S | − 1.

We map the source nodes and destination nodes of communication
edges added in round i (i.e., sources and destinations of edges in set
(Ecom
i \ Ecom

i−1)) to their representatives in the set of nodes Vnode
i and

unify the resulting edges in set Enode
i . The resulting (poly)tree T node

i =
(Vnode
i , Enode

i) precisely models derivations enabled by ciphertexts sent
in round i. That means, each edge in tree T node

i represents a ciphertext
sent in round i.
For every node v ∈ Vnode

i we define its parents as pa(v), its ancestors
(including itself) as an(v), and the number of all communication edges
to it as ce(v). Formally this means that an(v) ..= ⋃

v′∈pa(v) an(v′)∪{v}
and ce(v) ..= |pa(v)|+∑

v′∈pa(v) ce(v′).
We first consider the case in which the set of sending users in round i

only contains one user U i
S = {u∗}. We then observe that T node

i is a
tree with common leaf v∗i such that there exist paths to v∗i from all
nodes in Vnode

i . Consequently it holds that an(v∗i) = Vnode
i implying

that ce(v∗i) ≥ |Vnode
i |−1. Since Vusen

i is a subset of Vnode
i with |Vusen

i | =
|U i−1

S |, the number of ciphertexts user u∗ must send in round i for a
secure and correct group ratcheting protocol according to Definition 1
is at least |U i−1

S | − 1.
Now observe that u∗’s invocation of snd in round i is independent of

all sets U j
X, j ∈ [q] and set U i

S. Firstly, this implies that user u∗ sends
as many ciphertexts independent of sets U j

X for all j ∈ [q]. Secondly,
when considering any set of sending users in round i U i

S ⊆ [n], a
correct and secure construction according to Definition 1 must let
every user u ∈ U i

S independently send as many ciphertexts in round i
(as neither of them knows whether also other users send in that round
and therefore all of them must anticipate the worst case in which
they are the only sender in round i). As a result, the communication
complexity in every round i is at least |C[i]| ≥ |U i

S| · (|U i−1
S | − 1)

which proves the lower bound from Theorem 7. �

Extensions For simplicity and clarity, we only consider here a lim-
ited selection of allowed building blocks. The proof, however, shows

223

5 Communication Costs of Ratcheting in Groups

that the core issue underlying the lower bound is the inability to
mix public cryptographic values into a shared secret non-interactively.
Consequently, the list of considered building blocks can be extended
manifold without affecting our lower bound.
Even an x-party NIKE for a constant x (e.g., DHKE for x = 2)

appears to not solve the problem of variable concurrency (entirely):
If t > x members concurrently send, subsets of set [t] of size x can
compute shared secrets each, but the remaining users cannot derive a
corresponding public value for it. Hence, both the remaining senders
in the same round and senders in the next round may not be able to
utilize this shared secret. We leave the analysis of this as an open
question for future work.

5.7.5 Proof of Lemma 2

In order to prove Lemma 2 we (contrarily) assume that two compatible
secrets {k1, k2} = {k1} ×∩ {k2} (potentially with k1 = k2) exist with
k1 ∈ Der(X) ∩US and k2 ∈ Der(X∗ ∪ Y) ∩US.

For such a tuple (k1, k2), there must exist at least one secret k0 ∈
Der(X) ∩ US such that {k1, k2} ⊆ Der({k0}) because either k1 can
be derived from k2 (or vice versa and thereby wlog. k0 = k1 = k2) or
k1 = reg(k0, u) and k2 = reg(k0, v) for some u, v (and thereby k1 /∈ X
because all elements in X are of type R but k1 is not, such that
{k1, k0} ⊂ Der(X) which implies that k2 ∈ Der(X)). Consequently, it
holds that {k1, k2} ⊂ Der(X) ∩US.

For secret k2 ∈ Der(X∗ ∪ Y) ∩ Der(X) ∩ US it must hold that
k2 /∈ Der(X∗) ∪ Der(Y) (since k2 ∈ US =⇒ k2 /∈ Der(X∗) and
k2 ∈ Der(X) =⇒ k2 /∈ Der(Y)). Therefore, in order to ful-
fill k2 ∈ Der(X∗ ∪ Y), there must exist some k∗ ∈ Der({x∗, y})
with k∗ /∈ Der({x∗}) ∪ Der({y}) (and k2 ∈ Der({k∗})) for some tu-
ple (x∗, y) such that x∗ ∈ Der(X∗), y ∈ Der(Y), x∗ /∈ Der(Y), y /∈
Der(X∗) (since Der(X) ×∩ Der(Y) = ∅ =⇒ Der(X∗) ∩ Der(Y) = ∅
and k2 /∈ Der(X∗) ∪ Der(Y)). Additionally it must hold that k∗ ∈
Der(X) ∩ US (since k2 ∈ Der({k∗}) ∩ Der(X) ∩ US, all elements
in X are of terminal type R, and according to our symbolic model

224

5.7 Lower Bound of Communication Complexity

for two secrets a, b and set c of terminal type elements it holds that
a ∈ Der({b}) ∩ Der(c) =⇒ b ∈ Der(c)). It is important to note
that x∗ /∈ US (as x∗ ∈ Der(X∗) =⇒ x∗ /∈ US) and y /∈ Der(X) (as
y ∈ Der(Y) =⇒ y /∈ Der(X)) must hold.
We summarize: if Lemma 2 does not hold, there must exist a tu-

ple (x∗, y) such that x∗ ∈ Der(X∗), x∗ /∈ Der(Y) ∪US, y ∈ Der(Y),
y /∈ Der(X∗)∪Der(X) from which some secret k∗ can be derived such
that k∗ ∈ Der({x∗, y}) ∩ Der(X) ∩ US, k∗ /∈ Der({x∗}) ∪ Der({y}).
The only two derivation rules that combine two elements x∗, y from
two sets to a secret k∗ are rules c) and d) (note that no rule exist that
combines more than two elements and rule i) outputs no secrets).
Rule c) If with respect to rule c) it holds that k∗ = dprf({x∗, y}),

then in order to fulfill k∗ ∈ Der(X) (with y /∈ Der(X), meaning that
k∗ cannot be derived via rule c) from only X) it holds that k∗ ∈ X or
for some {x̃1

1, x̃
1
2} ⊆ Der(X \{k∗}) it holds that k∗ ∈ Derdec({x̃1

1, x̃
1
2}),

where Derdec is a derivation under only rule d). In order to sub-
stantiate this statement we highlight that only with rule d) secrets
can be derived that are also derivable with another rule in our sym-
bolic model (note that by definition of this case, k∗ is derivable via
rule c) already). If k∗ is, according to rule d), derivable via x̃1

1 =
enc(pk,RM , k∗),Fit(pk,RM , x̃1

2), then x̃1
1 (i.e., the ciphertext) must

have been derived via rule i) from set Der(X) \ {x̃1
1} since it is not

of a terminal type. This requires again that k∗ ∈ Derdec({x̃2
1, x̃

2
2}) for

some {x̃2
1, x̃

2
2} ⊆ Der(X \ {k∗}) \ {x̃1

1}, or k∗ ∈ X (as the encrypted
value k∗ must be known in order to apply rule i). Clearly, when all ci-
phertexts of the form x̃j1 = enc(pk,RM , k∗) with Fit(pk,RM , x̃j2) are
eliminated from set Der(X \{k∗}), then there exists no {x̃l+1

1 , x̃l+1
2 } ⊆

Der(X)\⋃j∈[l]{x̃
j
1} such that k∗ ∈ Derdec({x̃l+1

1 , x̃l+1
2 }). Nevertheless,

in order to derive any such tuple (x̃j1, x̃
j
2)—which is necessary as these

ciphertexts are not of a terminal type—k∗ ∈ X must hold. However,
k∗ ∈ X cannot hold as all elements in X are of a terminal type, but k∗
can, by the definition of this case, be derived from {x∗, y}. As a result,
k∗ is not derivable via rule c).
Rule d) If with respect to rule d) it holds that x∗ = enc(pk,RM , k∗),

225

5 Communication Costs of Ratcheting in Groups

Fit(pk,RM , y) (the proof for the inverse use of variables y =
enc(pk,RM , k∗), Fit(pk,RM , x∗) is analog), then since pk and x∗ are
not of terminal types and X∗ ⊆ Der(X) (implying that Der(X∗) ⊆
Der(X)) it must hold that x∗ ∈ Der(X). As x∗ must be derivable from
set Der(X) via rule i), it must accordingly hold that pk ∈ Der(X).
This in turn requires either according to rule h) that for the preced-
ing pk−1 with pk = up(pk−1, ad) it holds that pk−1 ∈ Der(X), or
according to rule g) that for the respective sk with pk = gen(sk) it
holds that sk ∈ Der(X). If the latter is not the case, then for each
preceding pk−j with pk−j = up(pk−j−1, ad−j) it holds that pk−j−1 ∈
Der(X), or for the respective sk−j with pk−j = gen(sk−j) it holds
that sk−j ∈ Der(X). As a result, for some sk−l with Fit(pk,RM , sk−l)
and pk ∈ Der(sk−l) it holds that sk−l ∈ Der(X). Now, due to
Fit(pk,RM , sk−l) with pk ∈ Der(sk−l) and Fit(pk,RM , y) it holds
that either sk−l ∈ Der(y) or y ∈ Der(sk−l) which contradicts Der(X)∩
Der(Y) = ∅ (because sk−l ∈ Der(X), y ∈ Der(Y)), such that k∗ is nei-
ther derivable via rule d). �

5.7.6 Inverse Derivation Guarantees

As part of the enforcement of symbolic algorithm executions, we im-
plicitly require that symbols can only be derived if their origin can be
derived as well, or if they are directly included in the set of symbols.
For each of our derivation rules that ‘produces’ new symbols, we ac-
cordingly define an ‘inverse’ that requires for a derived output that its
inputs are derivable, or the output is plain element of the considered
set, or that the output is encrypted in a plain element of that set.
The latter two alternatives are captured in a separate rule indicated
with ‘`d’.

a) M ` m : m /∈ {prf(k, ad), dprf({k1, k2}),up(sk, ad), reg(sk, u),
gen(sk), up(pk, ad), enc(pk,RM ,m′)} =⇒ M `d m

b) M ` prf(k, ad) =⇒ M ` k ∨M `d prf(k, ad)

c) M ` dprf({k1, k2}) =⇒ M ` k1, k2 ∨M `d dprf({k1, k2})

226

5.8 Discussion

e) M ` up(sk, ad) =⇒ M ` sk ∨M `d up(sk, ad)

f) M ` reg(sk, u) =⇒ M ` sk ∨M `d reg(sk, u)

g)
M ` gen(sk) =⇒M ` sk ∨M ` gen(sk ′) :

∀RMFit(gen(sk),RM , sk ′) ∨M `d gen(sk)

h)
M ` up(pk, ad) =⇒M ` pk ∨M ` sk :

∀RM Fit(pk,RM , sk) ∨M `d up(pk, ad)

i) M ` enc(pk,RM ,m) =⇒ M ` pk,m∨M `d enc(pk,RM ,m)

M `d m =⇒ m ∈M
∨ (enc(pk,RM ,m) ∈M
∧M ` sk : Fit(pk,RM , sk))
∨ (M `d enc(pk,RM ,m)
∧M ` sk : Fit(pk,RM , sk))

5.8 Discussion

We shortly reflect on our construction, compare it to previous works,
discuss its limitations with respect to the security model, and propose
possible efficiency improvements.
The main purpose of our protocol is to give an upper bound that

confirms our lower bound, but not to provide optimal security and
maximal functionality under concurrency. Nevertheless, our construc-
tion provides the same security as parallel pairwise Signal executions,
i.e. FS and PCS one round with non-empty sender set after all exposed
users updated their states. In addition, it provides full concurrency for
user updates unlike those in [CCG+18, Wei19, BBM+20b, ACDT20,
ACC+19a, ACJM20].
We were made aware that our protocol can alternatively be viewed

as an adapted (non-trivial and more complex) combination of

227

5 Communication Costs of Ratcheting in Groups

1. the propose-then-commit approach from the latest MLS draft
[BBM+20b] and

2. Tainted TreeKEM’s [ACC+19a] path update for tainted nodes
(that allows users to update other users’ paths on their behalf).

Indeed, in our protocol, before the senders in U i perform the snd
algorithm, they implicitly taint all nodes on paths of senders in U i−1,
who we view as just having proposed updates for their leaves in round
i − 1. (Tainting means that these nodes are marked to be updated
by the next active sender(s).) In contrast to the tainting-mechanism
in Tainted TreeKEM, in our protocol the nodes on paths of U i−1 are
immediately untainted after round i (i.e., they are not continuously
re-updated with every round until one of their descendants updates
them).
When using a variant of our construction for dynamic groups, re-

moved members in such groups may maliciously store secrets that they
saw during their membership for breaking confidentiality of group
secrets after their membership. Effectively solving this problem—
discussed as ‘double-join’—could be achieved by using ideas from
protocols constructed for dynamic groups, such as MLS and Tainted
TreeKEM. Without these ideas, it would be required that siblings of
all removed users that are still in the group issue state updates be-
fore any removed user would be unable to derive the output secrets.
Yet, as we discuss below, dynamic member changes appear to happen
rather seldom in many practical applications such that this restriction
might be insignificant.
Our security model is somewhat weak: we require an honest (but

curious) mechanism that clocks rounds, we do not allow the adversary
access to random coins used by senders in a round that are not saved
to their state, and we do not allow the adversary to alter broadcast
messages. Clock synchronization could, however, be rather coarse (re-
sulting in long round periods) as our protocol’s speedup in reaching
PCS, compared to non-concurrent alternatives that require members
to update their states one after another, is already significant. Fur-
thermore, we note that, although our model defines that all members
process all ciphertexts in a round, this is not mandatory but allows for

228

5.8 Discussion

immediate forward-secrecy due to kuPKE key pair updates. Process-
ing all previous ciphertexts before sending, as required for our con-
struction, is usually also unproblematic as sending anyways requires
a user to come online, such that all cryptographic operations can be
executed at that moment. Especially for reaching authentication and
handling out-of-order receipts, tools that are independent of our core
state update mechanism can be added, maybe even generically, to
our construction. The problem of weak random coins is indeed an
open problem for concurrent group ratcheting that we leave for future
research.
As stated earlier, it is not ultimately clear whether our lower bound

or upper bound is loose (or even both of them). One technique to im-
prove our upper bound would be to utilize more sophisticated broad-
cast encryption methods than the Complete Subtree method [NNL01],
such as the Layered Subset Difference method [HS02] or techniques
from the recently proposed optimal broadcast encryption scheme [AY20].
Additionally, if one allows a slight relaxation in the model by allow-
ing for delayed PCS, i.e. PCS in some ∆ > 1 rounds, then better
communication complexity could be achieved. This is because if users
update their state in a given round i by publishing a fresh public key,
other users could send secrets to these users to help them recover in all
rounds i′ ∈ {i+ 1, i+ 2, . . . , i+ ∆}, spreading out the communication
costs across these rounds and allowing for some adaptivity between
senders therein.

5.8.1 Insights for Practice

We shortly summarize concepts from our construction that could en-
hance, and insights from our lower bound that could influence real-
world protocols (like the MLS initiative’s design).

Almost-immediate PCS As mentioned many times before, im-
mediate PCS under t-concurrency appears to require t-party NIKE
(which is currently inaccessible). Postponing the update of shared se-
crets to a reaction in the next protocol execution step, as implemented

229

5 Communication Costs of Ratcheting in Groups

in our construction, bypasses this problem. The major advantages of
this bypass are a significant speedup for PCS, compared to sequential
state updates, and a maintained balanced tree structure, compared
to tree modifications, resulting in a reduced tree depth, or group par-
titions. An open question remains to analyze our scheme’s resilience
against weak randomness.

Static Groups are Practical Some deficiencies of our protocol
are only relevant in dynamic settings. In contrast, constant groups
can benefit from this construction significantly as it maintains com-
munication complexity in all cases nearly optimally. We emphasize
that many groups in real-world applications indeed seldom or never
change the set of members (e.g., family groups, friendship groups,
smaller working groups, etc).
To resolve issues with respect to membership changes, the mech-

anism proposed in Tainted TreeKEM [ACC+19a] could be applied
on path updates in our protocol. Thereby, the ‘double-join’-problem
could be prevented.

Better Solutions In the light of our lower bound, finding better
solutions for reaching PCS under concurrency seems very complicated,
if not unlikely. The set of permitted building blocks in our symbolic
model is very powerful, the functionality required by constructions in
this setting is very restricted, and the adversarial power in the lower
bound security definition is very limited. Hence, it seems necessary to
utilize more ‘exotic’ primitives or relax the required PCS guarantees
for obtaining better constructions.

230

6
Systematization of Models for

Key Exchange in Groups

Contents

6.1 Introduction . 232
6.2 Syntax Definitions . 237
6.3 Communication Models 248
6.4 Security Definitions . 262
6.5 Discussion . 271

Analysis of group key agreement protocols has a long history. Due to
the recent advent of ratcheting in groups—as considered in the pre-
vious chapter—, interest in these protocols has been renewed. We
subsume traditional group key agreement and modern group ratchet-
ing under the term group key exchange (GKE).
Most of the corresponding literature focuses on developing new

GKE protocols, so security models only play tangential roles in sup-
porting analysis of particular protocols. In this chapter, we bring the
modeling of GKE to the fore by discussing its purposes, taking a fresh
look at what GKE tries to achieve within the context of its use, and
examining how a model can support that goal. We apply this lens to
systematize, classify, and compare characteristics of all relevant GKE
models from the literature. From this comparison, we observe a range
of shortcomings in existing models, including non generic designs, gaps
in coverage of characteristics like overly restrictive syntax notions or
unrealistic adversarial capabilities, and incomplete definitions. Our
systematization enables us to identify a coherent suite of desirable
characteristics—some of them unmet in the literature—that we be-

231

6 Systematization of Models for Key Exchange in Groups

lieve should be used in GKE models going forward, and we demon-
strate that these can be fulfilled by describing a simple and generic
model. Given recently expanding interest in secure instant messaging
protocols to properly handle the group setting, a clear understanding
of security of GKE is of increased importance.

Contributions by the Author The development of our system-
atization framework and the literature research for this chapter are
exclusive contributions by the author of this thesis. Also the textual
description in this chapter as well as the design of our new model
are primarily contributed by the author. Joint discussions and tex-
tual revisions with the remaining authors of the publication in the
proceedings of CT-RSA 2021 [PRSS21], on which this chapter bases,
crucially improved the results as well as their presentation.

6.1 Introduction

Work on group key exchange (GKE) started with a simple question:
can Diffie–Hellman key exchange be extended to groups of three or
more people? [ITW82, BD95] This simple and general question omit-
ted many aspects of GKE that are important today: dynamic groups
(with members continuously joining and leaving the group), groups
with offline members (asynchronous mode of operation), or resilience
against adversaries with extended access to victims’ secrets (ratchet-
ing).
Today, there are many real-world applications that use or could ben-

efit from good group key exchange. These include instant messaging
applications as shown in [RMS18] and pursued by IETF’s Messag-
ing Layer Security (MLS) initiative [BBM+20a], which aim to provide
long-term communication in asynchronous settings, as well as applica-
tions such as videoconferencing which are used in synchronous, highly
interactive settings.
Many of these demands can be satisfied by existing constructions,

but nearly all of the corresponding formal analyses were conducted

232

6.1 Introduction

in differing models. Consequently, the GKE literature is a zoo of
incongruous, heterogeneous security models. Most significantly, there
is not even a common core syntax for group key exchange, nor a
standard approach for developing GKE security definitions. This has
led to a world where almost all models are designed ad hoc, and lack
of a common framework or even a common language for discussing
GKE which significantly impedes the field’s advancement. (Readers of
the group key exchange literature will undoubtedly have encountered
incompatible terminology and syntax, incomparable models, and even
informal or imprecise models and definitions.)

6.1.1 Systemizing Group Key Exchange Models

Given these disparate approaches, we think it is worth taking a step
back and having a fresh look at modeling group key exchange, with
special attention paid to the environment in which GKE takes place.
What features does an application expect of GKE? What type of
infrastructure (authentication secrets, network services) does GKE
assume exists? What types of adversaries can be considered in the
security? A good model should be versatile: it should try to support
the requirements of applications in as generic a way as possible, make
minimal assumptions on the environment in which it operates, and
allow for a wide class of realistic adversaries.
From these principles, our goals are to understand the primitive of

group key exchange—its functionality and its demands from users—
and identify components of the environment in which GKE is used
(e.g., demands from users, interfaces with upper-layer applications,
lower-layer network, and adversaries). We aim to derive a taxonomy
in which models for GKE can be analyzed, exploring the extent to
which models in the literature do or do not meet these demands and
restrictions, and the consequences thereof. At the same time, this
gives insight into how the field of group key exchange has evolved,
and how models in the literature relate to each other. Understanding
the history of GKE and having a fresh view on the aims of GKE, we
look to the future by examining how these demands and restrictions

233

6 Systematization of Models for Key Exchange in Groups

can be implemented in a simple, compatible, and versatile manner to
support future modeling of GKE.
We organize our investigation around four categories of properties

of GKE models:

1. the syntax of GKE (Section 6.2),

2. the definition of partnering (Section 6.3.1),

3. the definition of correctness (Section 6.3.2), and

4. the definition of security (Section 6.4).

While syntax, correctness, and security are present in security def-
initions throughout cryptography, partnering—a mechanism for de-
termining which computed keys are related to each other, within an
environment in which executions are taking place—plays a central role
in the key agreement literature (almost) exclusively.
For each of these four categories, we discuss their purposes and cen-

tral features and classify the literature with respect to them. Having
both considered the literature and revisited GKE with a fresh view, we
identify desirable characteristics in each of the four categories, from
the perspective of generality of use and minimality of assumptions
on the context in which GKE takes place. Consequently, we see how
individual definitional approaches and, to some extent, subparadigms
of group key exchange, do not fully satisfy the needs of group key
exchange analysis. We are further able to synthesize a coherent set
of desirable properties into a single, generic model, demonstrating it
is possible to design a model that simultaneously incorporates these
characteristics. Along the way, we hope this chapter gives the reader
some new perspectives on at least some aspects of GKE models.

Choice of Literature Group key exchange has a long history of,
partially informal, construction-driven literature: publications’ contri-
butions mostly consist of proposing new group key exchange schemes,
sometimes accompanied with only heuristic security arguments. We

234

6.1 Introduction

here only consider papers with formal computational game-based se-
curity models. Our comparison covers all publications on group key
exchange with this type of model that appeared in cryptographic ‘tier-
one’ proceedings1 [BCPQ01, BCP02a, BCP02b, KY03, KLL04, KS05,
CCG+18, ACDT20]. Beyond that, we browsed through all relevant
‘tier-two’ proceedings2 and selected publications that explicitly claim
to enhance the modeling of GKE [GBG09, YKLH18]. We also in-
clude three recently published articles on group ratcheting (aka. con-
tinuous group key exchange), one of which is yet only available as a
preprint [CCG+18, ACDT19, ACC+19b].3 Finally, for purely didac-
tic reasons, we add our rather artificial, restricted, and specialized
computational group ratcheting model from Chapter 5.
Tables 6.1, 6.2, 6.5, and 6.3 summarize and compare common fea-

tures identified from among the models under consideration, along
with our identification of desired realizations. The models in these
tables are arranged in three clusters: leftmost: group key exchange
in static groups [BCPQ01, BCP02b, KY03, KS05, GBG09, CCG+18]
including our model from Chapter 5; in the centre: group key ex-
change with ratcheting [CCG+18, ACDT19, ACC+19b] and our model
from Chapter 5; and rightmost: group key exchange in dynamic
groups [ACDT19, ACC+19b, BCP01, BCP02a, KLL04, YKLH18].
Within each cluster, models are ordered almost chronologically.

Relation to Two-Party Key Agreement While our focus is on
group key exchange, many of the issues here also affect two-party
key agreement. In our comparison, we indicate which properties are
specific to group key exchange, and which apply to key exchange in
general. Given the vast two-party key agreement literature, we do not
attempt to provide more direct comparisons between two-party and
group key exchange.

1CRYPTO, Eurocrypt, Asiacrypt, CCS, S&P, and Journal of Cryptology.
2TCC, PKC, CT-RSA, ACNS, ESORICS, CANS, ARES, ProvSec, FC etc.
3As our analysis was conducted before [ACDT20] was submitted to CRYPTO
2020, we consider a fixed preprint version [ACDT19] here.

235

6 Systematization of Models for Key Exchange in Groups

Proposed Model Since none of the models we examine achieves
all the desirable properties we identify, we finally propose a simple
and generic GKE model in the sections 6.2.5, 6.3.4, and 6.4.1 that
overcomes the described shortcomings. To be clear: it is not our goal
to guide the literature to a unified GKE model. Some modeling design
decisions are not universal and cannot be reduced to objective criteria,
so we are not under the illusion that a perfectly unified model exists,
nor that the research community will ever agree upon one notion. Our
purpose in writing down a model is to demonstrate the compatibility
of the desirable properties.

6.1.2 Basic Notions in Group Key Exchange

A group key exchange scheme is a tuple of algorithms executed by
a group of participants with the minimal result that one or multiple
(shared) symmetric keys are computed.

Terminology of GKE A global session is a joint execution of
a GKE protocol. By joint execution we mean the distributed invo-
cation of GKE algorithms by participants that influence each other
through communication over a network, eventually computing (joint)
keys. Each local execution of algorithms by a participant is called a
local instance. Each local instance computes one or more symmet-
ric keys, referred to as group keys. Each group key computed by a
single local instance during a global session has a distinct context,
which may consist of: the set of designated participants, the history of
previously computed group keys, the algorithm invocation by which
its computation was initiated, etc. Participants of global sessions, rep-
resented by their local instances, are called parties. (We discuss the
as-yet unsettled relation between local instances and parties and their
participation in sessions in Section 6.5.1.) If the set of participants in
a global session can be modified during the life of the session, this is
dynamic GKE; otherwise it is static GKE.
There are many alternative terms used in the GKE literature for

these ideas: local instances are sometimes called processes, local ses-

236

6.2 Syntax Definitions

sions, or (misleadingly) oracles; group keys are sometimes called ses-
sion keys; and parties are sometimes called users.

Security Models for GKE As in most game-based models, an
adversary against the security of a GKE scheme plays a game with a
challenger that simulates multiple parallel real global sessions of the
GKE scheme. The challenge that the adversary is (almost always)
asked to solve is to distinguish whether a challenge key is a real group
key established in one of the simulated global sessions or is a random
key. In order to solve this challenge, the adversary is allowed to obtain
group keys that were computed independently (called key reveal),
local secrets of instances that do not enable the trivial solution of
the challenge (called state exposure), and static party secrets that
neither trivially invalidate the challenge (called corruption).

6.2 Syntax Definitions

Modeling a cryptographic primitive starts with fixing its syntax: the
set of algorithms that are available, the inputs they take and the out-
puts they generate. Some of these algorithms bridge between different
layers in a protocol stack, e.g., they take input from a higher level ap-
plication and produce a ciphertext that is to be transported via a
lower level network. As a large number of design choices are possi-
ble at each of these layers, and these choices have to be reflected in
the primitive’s syntax, a single canonic syntax for GKE did not yet
crystallize. Indeed, we categorized the GKE models we consider ac-
cording to the most important classes of syntactical design choices and
observe that no two models have identical profiles.4 Roughly, we dis-
tinguished models by (1) imposed limits on the number of supported
parties, sessions, and instances; (2) the assumptions that are made on
the available infrastructure (e.g., the existence of a PKI); (3) the type
of operations that the protocols implement (adding users, removing

4Surprisingly, this holds even for models that appeared in close succession in
publications of the same authors.

237

6 Systematization of Models for Key Exchange in Groups

users, refreshing keys, . . .); and (4) the information that the proto-
cols provide to the invoking application (set of group members, session
identifier, . . .). We compiled the results of our studies in Table 6.1.
If in any of the categories one option is clearly more attractive than
the other options, we indicate this in the Desirable column (we leave
the cells of that column empty if no clear best option exists). Finally,
the Our model column indicates the profile of our own GKE model.

The upcoming paragraphs describe our categories in detail. For
some models an unambiguous mapping to our categories is not im-
mediate, in which case we made the assignment such that it comes
closest to what we believe the authors intended.

Syntax GK
E
spe

cifi
c

[BC
PQ

01]

[BC
P0
2b
]

[K
Y0
3]

[K
S0
5]

[G
BG

09]

[CC
G
+ 18]

Ch
ap
ter

5

[AC
DT

19]

[AC
C
+ 19b

]

[BC
P0
1]

[BC
P0
2a]

[K
LL
04]

[Y
KL
H1
8]

De
sir
ab
le

Ou
r m

od
el

Quantities
Instances per party n n n n n n 1 1 (1) 1 n n n n n
Parties per session F F V V V V V D D D D D D D D
Multi-participation

Setup assumptions
Authentication by . . . SK PW PK PK PK PK - PK (PK) SK PK PK PK any
PKI - - * * - * - * -
Online administrator - - - - - -

Operations
Level of specification G L L L L G G G L L
Algo: Setup -
Algo: Add -
Algo: Remove -
Algo: Refresh/Ratchet -
Abstract interface

Return values
Group key
Ref. for session
Ref. for group key
Designated members
Ongoing operation - - - -
Status of instance

Table 6.1: Syntax Definitions. Notation: n: many; F: fixed; V: variable; D: dy-
namic; : yes; : implicitly; : almost; : partially; : no; -: not applicable;
SK: symmetric key; PW: password; PK: public key; G: global; L: local.

238

6.2 Syntax Definitions

6.2.1 Quantities

All models we consider assume a universe of parties that are potential
candidates for participating in GKE sessions. Instances per party:
While most models assume that each party can participate—using
different instances—in an unlimited number of sessions, three mod-
els impose a limit to a single instance per party.5 In Table 6.1 we
distinguish these cases with the symbols n and 1, respectively. Par-
ties per session: While some models prescribe a fixed number of
parties that participate in each GKE session, other models are more
flexible and assume either that the number of parties is in principle
variable though bound to a static value when a session is created, or
even allow that the number of parties changes dynamically over the
lifetime of a session (accommodating parties being added/removed).
In the table we encode the three cases with the symbols F,V,D, re-
spectively. Multi-participation: In principle it could be possible
that parties participate multiple times in parallel in the same session
(through multiple instances, e.g., from their laptop and smartphone).
We note that all of the assessed models exclude such a feature and
impose a limit of at most one participation per party, which we en-
code with symbol in the whole row. We believe however that a
multi-participation feature might be useful in certain cases.

Discussion We note that models of type F in the Parties-per-session
category might be considerably weaker than models of type V. For ex-
ample, security reductions of early ring-based GKE protocols [BD95]
require that the number of participants of sessions always be even [BD05]
—a restriction that is not desirable in practice yet may not be clearly
visible in type F models.

5The case of [ACC+19b] is somewhat special: While their syntax in principle
allows that parties operate multiple instances, their security definition reduces
this to strictly one instance per party. For their application (secure instant
messaging) this is not a limitation as parties are short-lived and created ad-hoc
to participate in only a single session.

239

6 Systematization of Models for Key Exchange in Groups

6.2.2 Setup Assumptions

Security models are formulated with respect to a set of properties that
are assumed to hold for the environment in which the modeled primi-
tive is operated. We consider three classes of such assumptions, related
to the pre-distribution of key material to be used for authentication,
the availability of a centralized party that leads the group commu-
nication, and the type of service that is expected to be provided by
the underlying communication infrastructure. Authentication by
. . . : If a GKE protocol provides key establishment with authentica-
tion, its syntax has to reflect that the latter is achievable only if some
kind of cryptographic setup is established before the protocol session
is executed. For instance, depending on the type of authentication,
artifacts related to accessing pre-shared secret keys, passwords, or
authentic copies of the peers’ public keys, will have to emerge. In
the table we encode these cases with symbols SK,PW,PK, respec-
tively.6 PKI: In the case of public-key authentication we studied what
the models say about how public keys are distributed, in particular
whether a public key infrastructure (PKI) is explicitly or implicitly
assumed. In the table we indicate this with the symbols and . We
further specially mark with * the cases of ‘closed PKIs’ that service
exclusively potential protocol participants, i.e., PKIs with which non-
participants (e.g. an adversary) cannot register their keys. Online
administrator: The number of participants in a GKE session can be
very large, and, by consequence, properly orchestrating the interac-
tions between them can represent a considerable technical challenge.7
Two of the models we consider resolve this by requiring that groups be
managed by a distinguished always-honest leader who decides which
operations happen in which order, further two assume the same but

6In continuation of Footnote 5: The case of [ACC+19b] is special in that the
requirement is an ephemeral asymmetric key, i.e. a public key that is ad-hoc
generated and used only once. Also note that our restricted model from Chap-
ter 5 assumes external authentication mechanisms.

7Consider, for instance, that situations stemming from participants concurrently
performing conflicting operations might have to be resolved, as have to be cases
where participants become temporarily unavailable without notice.

240

6.2 Syntax Definitions

without making it explicit, and our model from Chapter 5 requires
synchronized clocks for separating rounds. The model of [ACC+19b]
is slightly different in that a leader is still required, but it does not
have to behave honestly. The model of [YKLH18] does not assume
orchestration: Here, protocols proceed execution as long as possible,
even if concurrent operations of participants are not compatible with
each other. This is argued to be sufficient if security properties en-
sure that the resulting group keys are sufficiently independent. The
remaining models are so simple that they don’t require any type of
administration.

Discussion While the authentication component that is incorpo-
rated into GKE protocols necessarily requires the pre-distribution of
some kind of key material, the impact of this component on the GKE
model should be minimal; in particular, details of PKI-related opera-
tions should not play a role. It should be even less desirable to assume
closed PKIs to which outsiders cannot register their keys.

Requiring the existence of an online administrator makes it easy
to ensure that all participants in a session have the same view on the
communication and group membership list, but also may limit the ap-
plicability of the model. For instance, instant messaging protocols are
expected to tolerate that participants, including any administrator,
might go offline without notice. Also, in certain decentralized envi-
ronments it wouldn’t be clear who would take the role of the leader.
On the other hand, if there is no online administrator, yet it shall
be ensured that all participants agree on some common decision. For
example, regarding the group membership list, it seems necessary to
employ involved techniques from distributed computing like a Byzan-
tine Concensus protocol. Note that GKE protocols might choose not
to promise common decisions in this respect, but to just communicate
locally accurate pictures when delivering keys (see Section 6.2.4).

241

6 Systematization of Models for Key Exchange in Groups

6.2.3 Operations

In this category we compare the GKE models with respect to the al-
gorithms that parties have available for controlling how they engage
in sessions. Level of specification: While precisely fixing the APIs
of these algorithms seems a necessity for both formalizing security
and allowing applications to generically use the protocols, we found
that very few models are clear about API details: Four models leave
the syntax of the algorithms fully undefined.8 Another four models
describe operations only as global operations, that is, specify how the
overall state of sessions shall evolve without being precise about which
steps the individual participants shall conduct. Only four models fix a
local syntax, that is, specify precisely which participant algorithms ex-
ist and which inputs and outputs they take and generate, respectively.
In the table, we indicate the three levels of specification with the
symbols , G, and L, encoding the terms ‘missing’, ‘global’, and ‘lo-
cal’, respectively. The model of [YKLH18] sits somewhere between G
and L, and is marked with . Algo: The main operations executed
by participants are session initialization (either of an empty group or
of a predefined set of parties), the addition of participants to a group,
the removal of participants from a group, and in some cases a key re-
fresh (which establishes a new key without affecting the set of group
members). In the table we indicate which model supports which of
these operations. Note that the correlation between the Add/Remove
rows and symbol D in Quantities/Parties-per-Session is as expected.
Only very recent models that emerged in the context of group ratch-
eting support the key refresh operation. Abstract interface: While
the above classes Add/Remove/Refresh are the most important oper-
ations of GKE, other options are possible, including Merge and Split
operations which join two established groups or split them into parts,
respectively. In principle each additional algorithm could explicitly
appear in the syntax definition of the GKE model, but a downside

8In some cases, however, it seems feasible to reverse-engineer some information
about an assumed syntax from the security reductions also contained in the
corresponding works.

242

6.2 Syntax Definitions

of this would be that the models of any two protocols with slightly
different feature sets would become, for purely syntactic reasons, for-
mally incomparable. An alternative is to use only a single algorithm
for all group-related operations, which can be directed to perform any
supported operation by instructing it with corresponding commands.
We believe that this flexible approach towards defining APIs to group
operations has quite desirable advantages, but note that only one of
the considered models supports it.

Discussion We emphasize once more that we consider the specifica-
tion of algorithms in an instance-centric fashion, that is, according to
the L-level of specification, a vital necessity: It is required to achieve
both practical implementability and meaningful security definitions.
To see the latter, consider that the only way for adversaries to attack
(global) sessions is by exposing (local) instances to their attacks.

6.2.4 Return Values

The main outcome of a successful GKE protocol execution is the group
key itself. In addition, protocol executions might establish further in-
formation that can be relevant for the invoking application. We cat-
egorize the GKE models by the type of information conveyed in the
protocol outcome. Group key: We confirm that all models that we
consider have a syntactical mechanism for delivering the key. Ref-
erence for session: By a session reference we understand a string
that serves as an unambiguous handle to a session, i.e., a value that
uniquely identifies a distributed execution of the scheme algorithms.
Some of the models we consider require that such a string be estab-
lished as part of the protocol execution, but not necessarily they pre-
scribe that it be communicated to the invoking application along with
the key. (Instead the value is used to define key security.) In Table 6.1,
we indicate with symbols and whether the models require the ex-
plicit or implicit derivation and communication of a session reference.
We mark models with if no such value is considered. Reference
for group key: A key reference is similar to a session reference but

243

6 Systematization of Models for Key Exchange in Groups

instead of referring to a session it refers to an established key. While
references to sessions and keys are interchangeable in some cases, in
general they are not. This is, for instance, trivially the case for proto-
cols that establish multiple keys in a single execution. Further, if com-
munication is not authentic, session references of protocol instances
can be matching while key references (and thus keys) are not. In the
table we indicate with symbols and if the models consider explicit
or implicit key references. Designated members: Once a GKE
execution succeeds with establishing a shared key, the corresponding
participants should learn who their partners are, meaning, with whom
they share the key. In some models this communication step is made
explicit, in others, in particular if the set of partners is input to the
execution, this step is implicit. A third class of models does not com-
municate the set of group members at all. In the table we indicate
the cases with symbols , , , respectively. Ongoing operation:
In GKE sessions, keys are established as a result of various types of
actions, particularly including the addition/removal of participants,
and the explicit refresh of key material. We document for each con-
sidered model whether it communicates for group keys through which
operation they were established. Status of instance: Instances can
assume different protocol-dependent internal states. Common config-
urations are however that instances can be in an accepted or rejected
state, meaning that they consider a protocol execution successful or
have given up on it, respectively. In this category we indicate whether
the models we consider communicate this status information to the
invoking application.

Discussion In settings where parties concurrently execute multiple
sessions of the same protocol, explicit references to sessions and/or
keys are vital for maintaining clarity about which key belongs to which
execution. (Consider attacks where an adversary substitutes all pro-
tocol messages of one session with the messages of another session,
and vice versa, with the result that the party develops a wrong un-
derstanding of the context in which it established the keys.) We feel

244

6.2 Syntax Definitions

that in many academic works the relevance of such references could
be more clearly appreciated. The formal version of our observation
is that session or key references are a prerequisite of sound composi-
tion results (as in [BFWW11]). Sound composition with other pro-
tocols plays a pivotal role also in the Universal Composability (UC)
framework [Can01], and we are not surprised to see that the concept
of a session reference emerges most clearly in the UC-related model
of [KS05].
Also related to composition is the requirement of explicitly (and

publicly) communicating session and key references, member lists, and
information like the instance status: If a security model does not make
this information readily available to an adversary, a reductionist secu-
rity argument cannot use such information without becoming formally,
and in many cases also effectively, invalid.
Finally, we emphasize that some GKE protocols allow for the con-

current execution of incompatible group operations (e.g. the concur-
rent addition and removal of a participant) so that different partici-
pants might derive keys with different understandings of whom they
share it with. This indicates that the Designated Members category
in Table 6.1 is quite important as well.

6.2.5 Our Syntax Proposal

We now turn to our syntax proposal that achieves all desirable prop-
erties from the above comparison (see Table 6.1). It is important to
note that, in contrast to our party-centric perspective in the compar-
ative systematization of this chapter, we design our model with an
instance-centric view. That means, we here consider instances as the
active entities in group key exchange and parties as only the passive
static key-storage in authenticated GKE to which distinct groups of
instances have joint access, respectively. We discuss the perspectives
on the relation between instances and parties in more details in Sec-
tion 6.5.1.
A GKE protocol G is a quadruple of algorithms G = (gen, init, exec,

proc) that generate authentication values, initialize an instance, execute

245

6 Systematization of Models for Key Exchange in Groups

operations according to protocol-dependent commands, and process
incoming ciphertexts received from other instances. In order to high-
light simplifications that are possible for unauthenticated GKE, we
indicate parts of the definition with gray marked boxes that are only
applicable to the authenticated case of GKE.

We define GKE protocol G over sets PAU , SAU , IID, S, CMD, C,
K, and KID where PAU and SAU are the public and secret authenti-
cator spaces, respectively (e.g., signing and verification key spaces, or
public group identifier and symmetric pre-shared group secret spaces,
etc.), IID is the space of identifiers that serve as instances’ references,
S is the space of instances’ local secret states, CMD is the space of
protocol-specific commands (that may include other instances’ refer-
ence strings from IID) to initiate operations in a session (such as
adding users, etc), C is the space of protocol ciphertexts sent among
instances, K is the space of group keys, and KID is the space of key
identifiers that refer to computed group keys.

The key generation algorithm gen generates a pair of public and
secret authenticator (pau, sau) ∈ PAU × SAU ; note that this pair is
not necessarily linked cryptographically. Algorithm init takes as in-
put a user-chosen instance identifier iid ∈ IID and outputs a fresh
(secret) instance state st ∈ S; note that, although exec and proc could
implicitly initialize the state internally, we explicitly treat the state
initialization for clarity reasons. With algorithm exec an instance can
initiate the execution of an operation in a group (e.g., adding/joining/
leaving/removing instances) by taking as input the current instance
state st ∈ S, an according command cmd ∈ CMD (potentially includ-
ing affected instances’ identifiers), and, optionally, a secret authenti-
cator sau ∈ SAU . The direct output is only the invoking instance’s
new state st ∈ S; we handle outputs to the network and to the user
explicitly below. To process an incoming ciphertext c ∈ C, algorithm
proc takes, in addition to it, instance state st ∈ S and, optionally,
secret authenticator sau ∈ SAU , and either outputs updated state
st ∈ S or a rejection symbol. Accordingly, shortcut notations for
these algorithms are

246

6.2 Syntax Definitions

gen →$ PAU × SAU
IID → init →$ S

SAU × S × CMD → exec →$ S
SAU × S × C → proc →$ S ∪ {⊥}

Interfaces for algorithms In contrast to previous literature we
treat communication to upper layer applications and to the under-
lying network infrastructure via interfaces that are provided by the
environment in which a protocol runs rather than via direct return
values. Thereby interfaces towards external protocols are explicitly
separated from return values that serve as interfaces between algo-
rithms of the primitive itself. Thus, each of the above algorithms can
call the interfaces below (to send ciphertexts or report keys):

• IID×C → snd takes ciphertexts (and the calling instance’s iden-
tifier) and sends these ciphertexts to the network such that they
are potentially delivered to and processed by other instances.

• IID×KID×K → key takes keys with their key identifier (and
the calling instance’s identifier) and provides these keys to upper
layer protocols.

Functions on objects We assume that the following functions can
be computed on key identifiers, ciphertexts, or references to instances,
respectively (for obtaining context information thereof; the advantage
of this approach is that one can individually add and remove context
information for more specific models at will). We note that the set
of members is neither session-specific nor instance-specific but infor-
mation that is attached to the context of each computed key. Since
there might be keys that are computed for different sets of members
in parallel (e.g., due to concurrently initiated conflicting membership
operations), a single variable in an instance cannot express this in-
formation. One can interpret the notation below as getter-functions
from object-oriented programming.

• KID → mem→ P(IID) derives the identifiers of instances that
are designated to be able to compute the referred key with their
respective protocol execution.

247

6 Systematization of Models for Key Exchange in Groups

• C → r → P(IID) derives identifiers of instances who are desig-
nated to receive the respective ciphertext.

• IID → pau→ PAU derives the public authenticator of an in-
stance from its identifier in the authenticated setting.

For further clarifications, we again refer to our discussion on instance-
versus party-centric perspectives in Section 6.5.1.

6.3 Communication Models
The high flexibility in communication (i.e., interaction among par-
ticipants) in a GKE protocol execution creates various problems for
modeling and defining security of GKE: Firstly, tracing participants
of a single global session is a non-trivial (if not highly complex) but
very important issue. Nearly all considered GKE models trace com-
munication partners differently and there exists an even wider variety
of partnering predicates (aka. matching mechanisms) in the two-party
key exchange literature that (aim to) fulfill this task. Secondly, nor-
matively defining valid executions of a GKE protocol (versus invalid
ones) in order to derive correctness requirements for them is not trivial
for a generic consideration of GKE protocols. We note that only five
out of the twelve considered models even define correctness. In the fol-
lowing we discuss partnering and correctness notions of the analyzed
models.

6.3.1 Partnering

Partnering has served many different, somewhat independent purposes
in (group) key exchange security models. In security experiments
where an adversary trying to break a challenge key can also reveal
‘independently’ established keys, partnering is used to (1) determine,
for a group key k of a challenge instance id, which other instances may
also have computed the same key k to forbid the adversary trivially
learning the challenge key through revealing id’s partner instances’
keys k (i.e., forbid trivial attacks). As such, the partnering predicate
must include at least those instances that necessarily computed the

248

6.3 Communication Models

same key (e.g., group members), but it can be extended to further in-
stances (such that the adversary is artificially weakened), for example,
to allow for more efficient GKE constructions.
Partnering is sometimes used in security definitions of explicitly au-

thenticated GKE to (2) identify successful active attacks against the
authentication of an established key k if k was computed by an in-
stance id without there existing partner instances at every designated
group member. Consequently, the partnering predicate must include
at least those instances belonging to designated members of a com-
puted key, otherwise it is trivial to break authentication. But the
predicate should not be extended to further instances, as actual at-
tacks against authentication might go undetected, if partnering is used
for this purpose.
Finally, partnering is (sometimes) used to (3) identify instances ex-

pected to compute the same key (i.e., define correctness requirements).
In this case, the partnering predicate must include at most those in-
stances that are required to compute the same key.
As these three purposes are at most loosely dependent on each other

(if at all), defining them via one unified notion can lead to problems.9
Partnering also plays a crucial role in (4) the generic composability

of (group) key exchange with other primitives: Brzuska et al. [BFWW11]
show that a publicly computable partnering predicate is sufficient and
(in some cases) even necessary for proving secure the composition of
a symmetric key application with keys from an AKE protocol. (Al-
though they consider two-party key exchange, the intuition is appli-
cable to group key exchange as well.)

9During the research for this chapter, we found two recent papers’ security defini-
tions for two-party authenticated key exchange that, due to reusing the partner-
ing definition for multiple purposes, cannot be fulfilled: Li and Schäge [LS17]
and Cohn-Gordon et al. [CCG+19] both require in their papers’ proceedings
version for authentication that an instance only computes a key if there ex-
ists a partner instance that also computed the key (which is impossible as not
all/both participants compute the key simultaneously). Still, the underlying
partnering concept suffices for detecting reveals and challenges of the same
key (between partnered instances). We informed the authors about this issue
during the writing of this chapter.

249

6 Systematization of Models for Key Exchange in Groups

Partnering/Matching/. . . GK
E
spe

cifi
c

[BC
PQ

01]

[BC
P0
2b
]

[K
Y0
3]

[K
S0
5]

[G
BG

09]

[CC
G
+ 18]

Ch
ap
ter

5

[AC
DT

19]

[AC
C
+ 19b

]

[BC
P0
1]

[BC
P0
2a]

[K
LL
04]

[Y
KL
H1
8]

De
sir
ab
le

Ou
r m

od
el

Defined?
Generic or protocol-specific - - -
Normative/Precise/Retrospect. Variable N - N N N N - N - N - V V P P
x Tight (vs. loose) - - - - - - - -
Publicly derivable - - -
Components included in partnering predicate:
Transcript

Matching transcripts - - -
Sequence of matching transcripts - - -

Identifiers
Group identifier - - - *
Key identifier - - - *
Externally input identifier - - -

Group Key
Whether partners computed a key - - -
Whether group computed a key - - -
Whether partners computed same key - - -

Members of the group - - -

Table 6.2: Partnering Definitions. Notation: : yes, : implicitly, : almost, :
partially, : no, -: not applicable.

Our Consideration of Partnering Predicates We consider the
tracing of jointly computed equal keys ((1) above) as the core purpose
of the partnering predicate, focusing on defining which keys can be re-
vealed by an adversary. If the predicate is defined precisely (i.e., it
exactly catches the set of same keys that result from a common global
session) and is publicly derivable, it also allows for generic composi-
tions of group key exchange with other primitives ((4) above), which
we also consider indispensable.
It is thereby important to overcome a historic misconception of

partnering: for either of the two above mentioned purposes not the
instances that compute keys are central for the partnering predicate
but the keys themselves and the contexts for which they are computed.
In two-party key exchange, the context of a key is defined by its global
session which itself is defined by its two participating instances. In
multi-stage key exchange, keys are computed in consecutive stages of

250

6.3 Communication Models

a protocol execution. Hence, the context can be determined by the
two participating instances in combination with the current (consecu-
tive) stage number. However, in group key exchange—especially if we
consider dynamic membership changes—the context of a key is not
defined consecutively anymore: due to parallel, potentially conflicting
changes of the member set in a protocol execution, it is not necessary
that all instances, computing multiple keys, perform these compu-
tations in the same order. Consequently, partnering is not a linear,
monotone predicate defined for instances but an individual predicate
for each computed group key that reflects its individual context. This
context can be protocol-dependent and may include the set of desig-
nated member instances, a record of operation by which its computa-
tion was initiated, etc. We treat the context information of group keys
as an explicit output of the protocol execution also for supporting the
use of these keys in upper layer applications (cf. Table 6.1).

Models Without Partnering Definitions Four models do not
define a partnering predicate at all. In one of these, [ACDT19],
a partnering predicate is implicit within their correctness definition.
Three of these have no need of partnering since they restrict to (quasi-)
passive adversaries ([ACDT19] and our model from Chapter 5) or
do not allow adversarial reveal of group keys explicitly [ACC+19b],
however by not defining a partnering predicate, they do not allow for
generic composition with other primitives. [BCP02a] seemingly rely
on an undefined partnering predicate, using the term ‘partner’ in their
freshness definition but not defining it in the paper. [KLL04] defines
a partnering predicate of which two crucial components (group and
key identifier; see the asterisk marked items in Table 6.2) are neither
defined generically nor defined for the specific protocol that is analyzed
in it.

Generality of Predicates A partnering predicate can be generic
or protocol-specific. From the considered models, only one has a
predicate explicitly tailored to the construction. But many of the

251

6 Systematization of Models for Key Exchange in Groups

generic partnering predicates involve values that are not necessarily
part of all GKE schemes (e.g., group identifiers, externally input iden-
tifiers, etc.); a sufficiently generic partnering primitive should be able
to cover a large class of constructions.

Character of Predicates Generic partnering predicates can be
normative, precise, or retrospectively variable.
Normative predicates define objective, static conditions under which

contexts of keys are declared partnered independent of whether a par-
ticular protocol, analyzed with it, computes equal keys under these
conditions. This has normative character because protocols analyzed
under these predicates must implement measures to let contexts that
are—according to the predicate—declared unpartnered result in the
computation of independent (or no) keys. As almost all security exper-
iments allow adversaries to reveal keys that are not partnered with a
challenge key (see Section 6.4), protocols that do not adhere to a spec-
ified normative predicate are automatically declared insecure. These
predicates can hence be considered as (hidden) parts of the security
definition.
The class of normative predicates can further be divided into tight

and loose ones. Tight predicates define only those contexts part-
nered that result from a joint protocol execution not being attacked
by active adversaries. This corresponds to the idea of matching con-
versations being the first tight predicate from the seminal work on
key agreement by Bellare and Rogaway [BR94]. Two instances have
matching conversations if each of them received a non-empty prefix
of, or exactly the same as, what their peer instances sent—resulting
in partnered contexts at the end of their session. Matching conver-
sations are problematic for the GKE setting for two reasons. First,
achieving security under matching conversations necessitates strongly
unforgeable signatures or messages authentication codes (when being
used to authenticate the communication transcript). Second, lifting
matching conversations directly and incautiously to the group set-
ting, as in [KY03], requires all communication in a global session

252

6.3 Communication Models

to be broadcast among all group members so each can compute the
same transcript—inducing impractical inefficiency for real-world de-
ployment. If the model’s syntax generically allows to (partially) reveal
ciphertexts’ receivers, as in [ACDT19], pairwise transcript comparison
does not require all ciphertexts to be broadcast but the strong unforge-
ability for authenticating signatures or MACs remains unnecessarily
required. Several models [BCPQ01, BCP01] circumvent the necessity
of broadcasting all group communication in a matching conversation-
like predicate, although their syntax does not reveal receivers of ci-
phertext: they define two instances and their contexts as partnered if
there exists a sequence of instances between them such that any con-
secutive instances in this sequence have partnered contexts according
to matching conversations. (This still needs strongly unforgeable sig-
natures and MACs, however.)
A loose partnering predicate is still static but declares more con-

texts partnered than those that inevitably result in the same key due
to a joint, unimpeded protocol execution. This may include contexts
of instances that actually did not participate in the same global ses-
sion, or that did not compute the same (or any) key. An example
for loose partnering predicates is key partnering [CCG+18] which de-
clares the context of a key as the value of the key itself, regardless
of whether it is computed due to participation in the same global
session. Clearly, two instances that participated in two independent
global sessions (e.g., one global session terminated before the other
one begun) should intuitively not compute keys with partnered con-
texts even if these keys equal. Forbidding the reveal of group keys
of intuitively unpartnered contexts results in security definitions that
declare protocols ‘secure’ that may be intuitively insecure. On the
other hand, partnering predicates that involve the comparison of a
protocol-dependent [GBG09] or externally input group identifier are
loose because equality of this identifier means being partnered but
does not imply the computation of an equal (or any) key.
A precise partnering predicate exactly declares those contexts as

partnered that refer to equal keys computed due to the participation
in the same global session. Hence, the conditions for being partnered

253

6 Systematization of Models for Key Exchange in Groups

are not static but depend on the respectively analyzed protocol. As
a response to the disadvantages of normative partnering (and in par-
ticular tight matching conversations), Li and Schäge [LS17] proposed
original-key partnering as a precise predicate for two-party key agree-
ment: two instances have partnered contexts if they computed the
same key, due to participating in a global session, that they would
also have computed (when using the same random coins) in the ab-
sence of an adversary. As of yet, there exists no use of original-key
partnering for the group setting in the literature, and we discuss draw-
backs of this form of precise predicate with respect to the purpose of
partnering below.
Variable predicates are parameterized by a customizable input that

can be specified individually for each use of the model in which they
are defined. Hence, these predicates are neither statically fixed nor
determined for each protocol (individually) by their model, but can be
specified ad hoc instead. As a result, a cryptographer, using a model
with a variable predicate (e.g., when proving a construction secure in
it), can define the exact partnering conditions for this predicate at will.
The main drawback is that different instantiations of the same variable
predicate in the same security model can produce different security
statements for the same construction. We consider this ambiguity
undesirable. Both group identifier and key identifier are left undefined
in [KLL04] so they are effectively variable; in [YKLH18] the group ID
is outsourced and thus left effectively variable.

Public Derivability of Predicates A partnering predicate can
and—in order to allow for generic compositions—should be publicly
derivable. That is, the set of partnered contexts should be deducible
from the adversarial interaction with the security experiment (or, ac-
cording to Brzuska et al. [BFWW11], from the communication tran-
script of all instances in the environment). Only four models consid-
ered achieve this as listed in Table 6.2; here refers to the implicit
ability to observe whether group keys are computed. Partnering in all
remaining models involves values in instances’ secret states. Original-

254

6.3 Communication Models

key partnering [LS17] (for two-party key exchange) is the only known
precise predicate but it is not publicly computable as it depends on
secret random coins.

Components of Predicates The lower part of Table 6.2 lists the
various parameters on which partnering predicates we consider are de-
fined. These parameters include: the transcript of communications,
protocol-specific identifiers, external inputs, the computed group
key, the set of members of the group, etc. There are many other
potential parameters as well (cf., two-party key exchange literature).
The two main purposes of partnering ((1) forbidding trivial attacks

and (4) allowing for generic composition) use the partnering predi-
cate to determine which keys computed during a protocol execution
are meant to be the same and in fact equal (i.e., whether they share
the same context). Consequently, an ideal partnering predicate should
depend on the context that describes the circumstances under which
(and if) the group key is computed. As only for some protocols (e.g.,
optimal secure ones; cf. our security notions in chapters 3 and 4) it
is reasonable that the entire communicated transcript primarily de-
termines the circumstances (i.e., the context) under which a key is
computed, we consider it unsuitable for defining partnering generi-
cally.

6.3.2 Correctness

Correctness is a quality of protocols that describes the functional guar-
antees one can expect from their execution. Before discussing these
guarantees and the requirements under which one can expect them,
we first discuss the role of correctness definitions in models that are
aimed for the analysis of another (potentially independent) quality:
security.

Safety and Liveness While usually being defined unified in cryp-
tographic literature, correctness is often alternatively considered as

255

6 Systematization of Models for Key Exchange in Groups

the combination of distinct safety and liveness predicates in other re-
search fields (such as distributed computing). Thereby safety captures
consistency guarantees and liveness declares conditions under which
actual functionality is guaranteed. Intuitively, liveness expresses un-
der which conditions the protocol execution computes an output (e.g.,
if the adversary remains passive and the protocol terminates, then a
key is computed by all execution participants), and safety expresses
which conditions this output must fulfill when it is computed, without
requiring that it is ever computed (e.g., if a key is computed by some
participants during a session, then it must be the same key for all
of them). After explaining the problems with liveness definitions in
interactive group protocols, we discuss which of these two components
(safety and liveness) are important for defining security.

Liveness in Interactive Group Protocols For most cryptographic
primitives, correctness in the form of liveness is defined by requiring a
specific output behavior for a specific execution schedule. In the sim-
plest (non-interactive) case, the nested execution of several algorithms
is required to produce a certain output (e.g., for encryption schemes,
the decryption of the encryption of a message must produce the mes-
sage again; for signature schemes, the verification of a message with
a signature that was computed for this message must accept; etc).
Similarly, for two-party key exchange (if correctness is defined) the
honest execution of the protocol is usually required to establish the
same key for both execution participants (see e.g., [BR94]).
For protocol executions (i.e., sessions) with multiple participants

that can (all) actively influence the output of this execution (e.g.,
dynamic GKE in which all group members can initiate membership
changes), there may exist multiple different execution schedules that
results in the same output (e.g., the same group can compute the
same key independent of the order of membership changes). Simulta-
neously, there may not exist only one ‘correct’ output for each specific
execution schedule. (Consider, for example, a dynamic GKE session
in which two group members concurrently initiate conflicting changes

256

6.3 Communication Models

of membership. The resulting set of members and the group key, out-
put by participating members, may differ for different GKE schemes,
or even for different executions of the same GKE scheme.) Finally, as
argued in Section 6.2, we consider it undesirable to explicitly model
specific operations (and their impact on the session) in GKE syntax
definitions. Specifying the exact output of specific execution schedules
as part of a correctness definition is thereby undesirable as well. It is,
consequently, complicated (if not impossible) to formulate a complete
and static definition of execution schedules with their required output
in a liveness definition for generic GKE protocols.

Correctness GK
E
spe

cifi
c

[BC
PQ

01]

[BC
P0
2b
]

[K
Y0
3]

[K
S0
5]

[G
BG

09]

[CC
G
+ 18]

Ch
ap
ter

5

[AC
DT

19]

[AC
C
+ 19b

]

[BC
P0
1]

[BC
P0
2a]

[K
LL
04]

[Y
KL
H1
8]

De
sir
ab
le

Ou
r m

od
el

Defined
Requirements

Honest transcript delivery - - - - - - -
Two instances are partnered - - - - - - -
All group instances are partnered - - - - - - -
A key is computed - - - - - - -
All participating instances share gid - - - - - - -
Keys are partnered - - - - - - -

Guarantees
Same key - - - - - - -
Non-zero key - - - - - - -
Keys are partnered - - - - - - -

Table 6.3: Correctness Definitions. Notation: : yes, : implicitly, : almost, :
partially, : no, -: not applicable.

Correctness and Security Intuitively, correctness and security
could be considered independent qualities: a scheme can be correct but
insecure, incorrect but secure, correct and secure, or neither correct
nor secure. Indeed, ‘lazy’ (i.e., incorrect) schemes not doing anything
trivially (can be adapted to) reach most security properties imme-
diately. Thereby the question may arise why one needs to consider
correctness in a security analysis at all.
We observe that there exist security definitions that cannot be

257

6 Systematization of Models for Key Exchange in Groups

achieved by schemes that provide certain correctness guarantees and
consequently there exist correctness definitions that schemes cannot
achieve when also providing certain security guarantees. Hence, for
demonstrating the usefulness of a security definition, either a cor-
rectness definition (including liveness guarantees) that is (believed to
be) compatible with this security should be provided. Alternatively,
a construction accordingly secure, implicitly showing its correctness
guarantees, should be provided along with this security definition.
Beyond demonstrating usefulness, many natural security definitions
implicitly or explicitly rely on an underlying safety definition. In Sec-
tion 6.3.3 we discuss this idea of security up to correctness [RZ18] in
more details.
We conclude that defining correctness in definitions of security can

be desirable in the form of liveness for demonstrating that the secu-
rity can be met by useful constructions, and is desirable in the form of
safety for guiding restrictions of the adversary in the security experi-
ment. As a definition of security normally comes with an analysis of
a (useful) protocol, the definition of liveness can usually be neglected.
Furthermore, due to the sketched problems with (complete and static)
liveness definitions, we focus on safety guarantees in the following.

A Clean Definition of Safety The only functionality, GKE pro-
tocols should provide generically, is the establishment of group keys.
Thereby keys should be the same if they were output by participants
of a joint session and meant to be established as a shared group key.
The generic mechanism for tracing commonly computed group keys
is the partnering predicate. Consequently, partnered keys (or keys
of partnered instances) should be equal in order to fulfill safety (see
Table 6.3).
As our syntax from Section 6.2.5 allows upper layer protocols to

identify keys (with the key identifier), it is actually not necessary
that two session participants compute two distinct group keys in the
same order. Partnering of instances, however, seems to be a linearly
sequential property (if two instances were partnered once and their

258

6.3 Communication Models

partnerships is disrupted, they will not become partners again). Part-
nering of group keys is, in contrast, a time-independent property (if
two keys are partnered, they will remain partnered forever). As a con-
sequence, we consider keys (as opposed to instances) being partnered
desirable as the requirement of the safety definition.

Discussion of Models As it can be seen in Table 6.3, two defini-
tions [KY03, YKLH18] match our idea of requirements for correctness
(note that both define partnering w.r.t. instances and [KY03] require
honest delivery for being partnered). In addition to requiring key
equality as safety guarantee, [KY03] furthermore demand the compu-
tation of a non-trivial real key.
The remaining three correctness definitions require an honest pro-

tocol execution (satisfying their explicit or implicit partnering predi-
cates) for the computation of same keys. The above described problem
of declaring an execution honest (and requiring a certain output from
it) is resolved in these three definitions as follows: The former two
models [KS05, GBG09] solely capture static GKE (in which the exe-
cution schedule can be predetermined) and the latter one forbids the
concurrent processing of conflicting operations in groups such that a
fixed, shared output can be expected.

6.3.3 Safety and Security

Based on the idea that an adversary in a security experiment only
needs to be restricted when attacking a correct scheme, the idea of
security up to correctness (more precisely “indistinguishability up to
correctness”) was formally proposed by Rogaway and Zhang [RZ18].
Their approach for defining security for a given correctness defini-
tion is intuitively as follows: in the security experiment adversaries
are given full power over the execution of a primitive simulated by a
challenger, potentially including access to special oracles that provide
secrets of instances involved in the execution. The challenger then
restricts this power by “silencing” (i.e., suppressing) only adversarial
queries for which the challenger’s response is already determined by

259

6 Systematization of Models for Key Exchange in Groups

the correctness definition. This restriction prevents the trivial solution
of embedded challenges in the security experiment (e.g., if correctness
requires partnered keys k′, k∗ to equal k′ = k∗, then if k∗ is a chal-
lenge, revealing k′ determines the challenge’s solution). The major
advantage of this approach is reduced ambiguity in defining security.
Note that one can still define oracles for adversarial access to secrets
freely.
It is immediate that the approach of Rogaway and Zhang [RZ18]

requires the definition of correctness for obtaining a definition of se-
curity. However, the challenger, when silencing oracle queries based
on their determination, does not need to know in advance when the
protocol computes an output (as the outputs of the protocol execution
are directly observable for the challenger). The challenger only needs
to know how a computed output relates to other values. This relation
is expressed by the definition of safety already.
We note that the overall idea behind security up to correctness—

silencing oracles or penalizing queries to them, based on the safety
guarantees one expects—is not only the basis of this formal defini-
tion process but also the intuition behind most informal, manual ap-
proaches for defining security.

6.3.4 Our Partnering and Correctness Proposals

We here shortly describe the details of our partnering and correctness
definitions, the latter being based on the game from Figure 6.1.

Definition 3 (Partnering) Two keys k1, k2 output as tuples (kid1, k1)
and (kid2, k2) via interface key are partnered iff kid1 = kid2.

Our partnering predicate, hence, defines keys with the same explic-
itly output context kid partnered.

Definition 4 (Safety) A GKE protocol G is safe if for all adver-
saries A against game FUNC according to Figure 6.1 it holds that
Pr[FUNCG(A) = 1] = 0.

260

6.3 Communication Models

Game FUNCG(A)
00 K[·]← ⊥; ST[·]← ⊥
01 SAU[·]← ⊥
02 Invoke A()
03 Stop with 0
Oracle Gen
04 (pau, sau)←$ gen
05 SAU[pau]← sau
06 Return pau
Oracle Init(iid)
07 Require iid ∈ IID
08 Require SAU[pau(iid)] 6= ⊥
09 Require ST[iid] = ⊥
10 st ←$ init(iid)
11 ST[iid]← st
12 Return

Proc sndiid(c)
13 Give c to A

Oracle Execute(iid, cmd)
14 Require ST[iid] 6= ⊥
15 sau ← SAU[pau(iid)]; st ← ST[iid]
16 st ←$ exec(sau, st, cmd)
17 ST[iid]← st
18 Return

Oracle Process(iid, c)
19 Require ST[iid] 6= ⊥
20 sau ← SAU[pau(iid)]; st ← ST[iid]
21 st ←$ proc(sau, st, c)
22 ST[iid]← st
23 Return

Proc keyiid(kid, k)
24 · Reward K[kid] /∈ {⊥, k}
25 · Reward iid /∈ mem(kid)
26 K[kid]← k
27 Give kid to A

Figure 6.1: FUNC game of GKE describing correctness in the form of safety.
Gray marked code is only applicable in the authenticated setting. Lines marked
with ‘·’ at the left margin highlight safety requirements. For an explanation of the
used variables see Table 6.4.

We declare a GKE protocol incorrect if two computed non-trivial
keys (i.e., k 6= ⊥) with equal key identifiers differ (see Figure 6.1
line 24).
Beyond the core functionality of establishing group keys, our syntax

allows upper layer protocols to derive the set of designated group mem-
bers for each established group key. For this additional functionality
we require that group keys, output by an instance via interface key,
are actually designated to this instance (Figure 6.1 line 25). We em-
phasize that this requirement is indeed a property of safety (and not
security) as it does not hinder any independent exposable instance to
be able to compute the key internally without outputting it.
All remaining pseudo-code in Figure 6.1 only describes the necessary

framework for executing the algorithms inside the oracles that are
provided to adversaries. Consequently, these parts of the Figure are

261

6 Systematization of Models for Key Exchange in Groups

irrelevant for understanding the definition and equally appear in our
security experiment in Figure 6.2.

K Array of computed group keys
ST Array of instance states
SAU Array of secret authenticators
CR Set of corrupted or external authenticators
WK Set of weak group keys
CH Set of keys challenged for A
CP Set of keys already computed by an instance
TR Transcript as queue of ciphertexts sent among instances

Table 6.4: Variables in figures 6.1 and 6.2.

6.4 Security Definitions

Although the actual definition of security is the core of a security
model, there is no unified notion of ‘security’ nor agreement on how
strong or weak ‘security’ should be—in part because different scenar-
ios demand different strengths. Thus we do not aim to compare the
strength of models’ security definitions, but do review clearly their
comparable properties. We focus on the desired security goals, adver-
sarial power in controlling the victims’ protocol execution, and adver-
sarial access to victims’ secret information. We do not compare the
conditions under which adversaries win the respective security exper-
iments (aka. ‘freshness predicates’, ‘adversarial restrictions’, etc.) as
this relates to the models’ ‘strength’, but we do report on character-
istics such as forward-secrecy or post-compromise security.

Security Goals The analyzed models primarily consider two inde-
pendent security goals: secrecy of keys and authentication of partici-
pants.
Secrecy of keys is in all models realized as indistinguishability

of actually established keys from random values, within the context

262

6.4 Security Definitions

Security GK
E
spe

cifi
c

[BC
PQ

01]

[BC
P0
2b
]

[K
Y0
3]

[K
S0
5]

[G
BG

09]

[CC
G
+ 18]

Ch
ap
ter

5

[AC
DT

19]

[AC
C
+ 19b

]

[BC
P0
1]

[BC
P0
2a]

[K
LL
04]

[Y
KL
H1
8]

De
sir
ab
le

Ou
r m

od
el

Security Goals
Key indistinguishability
x Multiple challenges
Explicit authentication

Adversarial Protocol Execution
All algorithms
Instance specific
Concurrent invocations
Active communication manipulation

Adversarial Access to Secrets
Corruption of involved parties’ secrets - -
x After key exchange - - - -
x Before key exchange - - - -
Corruption of independent parties’ secrets - -
x Always - - - -
Exposure of involved instances’ states
x After key exchange - - - - -
x Before key exchange - - - - -
Exposure of independent instances’ states -
x Always - - - - - -
Reveal of independent group keys
x Always

Table 6.5: Security Definitions. Notation: : yes, : implicitly, : almost, :
partially, : no, -: not applicable.

of an experiment in which the adversary controls protocol executions.
During the experiment, the adversary can query a challenge oracle
that outputs either the real key for a particular context or a random
key; a protocol is secure if the adversary cannot distinguish between
these two. Only one model allows adversaries to query the challenge
oraclemultiple times; all others allow only one query to the challenge
oracle, resulting in an unnecessary and undesirable tightness loss in
reduction-based proofs of composition results.
Key indistinguishability against active adversaries already implies

implicit authentication of participants. That means keys computed in
a session must diverge in case of active attacks that modify commu-
nications. Some models require explicit authentication: that the
protocol explicitly rejects when there was an active attack. However,

263

6 Systematization of Models for Key Exchange in Groups

the value of explicit authentication in GKE, or even authenticated
key exchange broadly, has long been unclear [Sho99]: GKE is never a
standalone application but only a building block for some other pur-
pose, providing keys that are implicitly authenticated and thus known
only to the intended participants. If the subsequent application aims
for explicit authentication of its payload, the diverging of keys due to
implicit authentication can be used accordingly.

Adversarial Protocol Execution To model the most general at-
tacks by an adversary, the security experiment should allow adver-
saries to setup the experiment and control all victims’ invocations of
protocol algorithms and operations; all models considered (except
for our restricted one from Chapter 5) do so. However, in two models
the adversary can setup only one group during the entire security ex-
periment (); this again introduces a tightness loss in the number of
groups for composition results, and means that the use of long-term
keys by parties across different sessions, as defined by [ACC+19b],
cannot be proven secure in the respective model.
Most models allow for instance-specific scheduling of invocations.

But four models (/) require the adversary schedules algorithm and
operation invocations for all affected instances together; diverging and
(for) concurrent invocations cannot be scheduled in these four mod-
els. In practice this restriction means that some form of consensus is
required (e.g., a central delivery server). While algorithms and opera-
tions can be invoked concurrently in [ACC+19b], this model allows
only one of the resulting concurrently sent ciphertexts to be delivered
to and processed by the other participants of the same session; this
similarly requires some consensus mechanism.
An active adversary who modifies communication between in-

stances is permitted in almost all models. However, [CCG+18] forbid
active attacks during the first communication round, [ACC+19b] only
allow adversaries to inconsistently forward ciphertexts but neither re-
order nor manipulate them, and [ACDT19] as well as our model from
Chapter 5 require honest delivery of the transcript. For the deploy-

264

6.4 Security Definitions

ment of protocols secure according to the latter three models, active
adversaries must be considered impractical or authentication mecha-
nisms must be added.

Adversarial Access to Secrets GKE models allow the adversary
to learn certain secrets used by simulated participants during the se-
curity experiment. Below we discuss the different secrets that can be
learned and the conditions under which this is allowed. We neglect
adversarial access to algorithm invocations’ random coins in our sys-
tematization as only three models consider this threat in their security
experiments [CCG+18, ACDT19, ACC+19b].
Corruption of party secrets models a natural threat scenario

where parties use static secrets to authenticate themselves over a long
period. Corruption is also necessary to model adversarial participation
in environments with closed public key infrastructure (cf. Section 6.2),
allowing the adversary to impersonate some party. Table 6.5 shows
which models allow for corruptions of party secrets after and before
the exchange of a secure group key (i.e., forward-secrecy and post-
compromise security, respectively), and corruptions of independent
parties anytime. In [ACDT19] parties do not maintain static secrets
so corruption is irrelevant. Two other models do have parties with
static secrets but do not provide an oracle for the adversary to cor-
rupt them.10 Due to imprecise definitions, [KLL04] partially forbids
corruptions of involved parties even after a secure key was established,
and two other models even forbid corruptions of independent parties
before an (independent) secure group key is established. Only three
models treat authentication as the sole purpose of party secrets, defin-
ing precise conditions that allow corruptions before and after the es-
tablishment of a secure group key. As secrecy of a group key should
never depend solely on secrecy of independent parties’ long-term se-
10Moreover, in [BCP02b, ACC+19b], party secrets cannot be derived via state

exposures. Although [ACC+19b] allow the exposure of instance states, their
syntax, strictly speaking, does not have a method for using party secrets in the
protocol execution, even though their construction makes use of them (violating
the syntax definition).

265

6 Systematization of Models for Key Exchange in Groups

crets and forward-secrecy is today considered a minimum standard, we
deem security despite later corruption of long-term secrets desirable.
Exposure of instance states is especially important in GKE

because single sessions may be quite long-lived—such as months- or
years-long chats—so local states may become as persistent as party
secrets. In most security experiments that provide adversarial access
to instance states, their exposure is not permitted before the estab-
lishment of a secure group key. Some of these models further restrict
the exposure of independent instances’ states (e.g., because they were
involved in earlier stages of the same session). The three articles and
our own model that consider ratcheting of state secrets allow adversar-
ial access to these states shortly before and after the establishment of
a secure group key. [CCG+18] model state expose through the reveal
of random coins, which means an exposure at a particular moment
reveals only newly generated secrets in the current state, not old state
secrets. We consider the ability to expose states independent of and
after the establishment of a group key desirable, and leave state ex-
posure before establishment—post-compromise security—as a bonus
feature.
The reveal of established group keys in the security experiment

is important to show that different group keys are indeed indepen-
dent. One motivation for this is that use of keys in weak applications
should not hurt secure applications that use different keys from the
same GKE protocol. The reveal of keys is furthermore necessary to
prove implicit authentication of group keys. Reveals should also be
possible to permit composition of key exchange with a generic sym-
metric key protocol [BFWW11]. Almost all models allow the reveal
of different (i.e., unpartnered) group keys unlimitedly. As [BCP02a]
and [KLL04] do not define partnering adequately (see Section 6.3.1),
it cannot be assessed which group keys are declared unpartnered in
their models. The adversary in [ACC+19b] is not equipped with a
dedicated reveal oracle but since the security in this model is strong
enough, the exposure of instance states suffices to obtain all keys with-
out affecting unpartnered keys. [YKLH18] forbid the reveal of earlier
group keys in the same session. As unpartnered keys should always be

266

6.4 Security Definitions

independent we consider it desirable to allow their unrestricted reveal.

6.4.1 Our Security Proposal

We define security (see Figure 6.2) by allowing adversaries to inter-
act with the scheme’s algorithms via oracles Init, Execute, Process in
the unauthenticated setting and additionally Gen in the authenticated
setting, plus oracles to obtain secrets Expose, Reveal in the unauthen-
ticated setting and additionally Corrupt in the authenticated setting,
plus an oracle Challenge to obtain challenges. In the following we
describe how we restrict the adversary (e.g., to prevent the trivial
solving of challenges). We note that almost all pseudo-code in Fig-
ure 6.2 also appears in Figure 6.1 (building the infrastructure of the
simulation by the challenger). Only the remaining parts are relevant
for understanding restrictions of the adversary and the definition of
security.

Restriction of the Adversary The simplest trivial attack that
our security experiment forbids is:

1. A key must not be both revealed and queried as a challenge
(lines 36,41,05).

We treat local state exposures and their effects as follows:

2. After an exposure all keys that can be computed by the exposed
instance are declared weak (i.e., known to the adversary), if
they have not already been computed by this exposed instance
(lines 44,33).

We thereby require forward-secrecy (as previously computed keys are
required to stay secure after an exposure) but not post-compromise
security (as all future keys of this instance are declared insecure after
an exposure) since we do not aim for an optimal security definition.
Finally, the treatment of active attacks against the transcripts in

the unauthenticated setting is as follows:

267

6 Systematization of Models for Key Exchange in Groups

3a) If a ciphertext from an unknown source (or from a known source
in the wrong order) is processed without being rejected (lines 29-
30,25) then all keys that can be computed by the processing
instance are declared weak, if they have not already been com-
puted by this processing instance (lines 26,33).

In the authenticated setting, the set of keys that are declared weak
is reduced based on the set of corrupted authenticators. Authenti-
cators are considered corrupted if they have not be generated by the
challenger (lines 01,09; because thereby they are potentially adversar-
ially generated) or if they have been honestly generated first but then
corrupted (lines 01,09,47). As the impersonation of all uncorrupted
authenticators should be hard in the authenticated setting, active at-
tacks against the transcripts are treated as follows:

3b) If a ciphertext from an unknown source (or from a known source
in the wrong order) is processed without being rejected (lines 29-
30,25) then all keys that can be computed by the processing
instance are declared weak, if they have not already been com-
puted by this processing instance (lines 26,33) and they are
marked to be computable by an instance with a corrupted au-
thenticator (lines 26,01,09,47).

Definition 5 (Adversarial Advantage) The advantage of an ad-
versary A in winning game KIND from Figure 6.2 is Advkind

G (A) ..=
|Pr[KIND1

G(A) = 1]− Pr[KIND0
G(A) = 1]|.

268

6.4 Security Definitions

Game KINDb
G(A)

00 K[·]← ⊥; ST[·]← ⊥
01 SAU[·]← ⊥; CR ← PAU
02 WK← ∅; CH← ∅
03 CP[·]← ∅; TR[·][·]← ⊥
04 b′ ←$ A()
05 · Require WK ∩ CH = ∅
06 Stop with b′

Oracle Gen
07 (pau, sau)←$ gen
08 SAU[pau]← sau
09 · CR ← CR \ {pau}
10 Return pau
Oracle Init(iid)
11 Require iid ∈ IID
12 Require SAU[pau(iid)] 6= ⊥
13 Require ST[iid] = ⊥
14 st ←$ init(iid)
15 ST[iid]← st
16 Return

Oracle Execute(iid, cmd)
17 Require ST[iid] 6= ⊥
18 sau ← SAU[pau(iid)]; st ← ST[iid]
19 st ←$ exec(sau, st, cmd)
20 ST[iid]← st
21 Return

Oracle Process(iid, c)
22 Require ST[iid] 6= ⊥
23 sau ← SAU[pau(iid)]; st ← ST[iid]
24 st ←$ proc(sau, st, c)
25 · If @iids : c = TR[iids][iid].dequeue()

∧st 6= ⊥:
26 · WK ∪← {kid ∈ KID \ CP[iid] :

∃iidcr : {iid, iidcr} ⊆ mem(kid)
∧ pau(iidcr) ∈ CR}

27 ST[iid]← st
28 Return

Proc sndiid(c)
29 · For all iidr ∈ r(c):
30 · TR[iid][iidr].enqueue(c)
31 Give c to A

Proc keyiid(kid, k)
32 K[kid]← k
33 · CP[iid] ∪← {kid}
34 Give kid to A

Oracle Reveal(kid)
35 Require K[kid] 6= ⊥
36 · WK ∪← kid
37 Return K[kid]

Oracle Challenge(kid)
38 Require K[kid] 6= ⊥ ∧ kid /∈ CH
39 k0 ← K[kid]
40 k1 ←$ K
41 · CH ∪← kid
42 Return kb
Oracle Expose(iid)
43 Require ST[iid] 6= ⊥
44 · WK ∪← {kid ∈ KID \ CP[iid] :

iid ∈ mem(kid)}
45 Return ST[iid]
Oracle Corrupt(pau)
46 Require SAU[pau] 6= ⊥
47 · CR ∪← {pau}
48 Return SAU[pau]

Figure 6.2: KIND game of GKE modeling unauthenticated or authenticated
group key exchange. ‘·’ at the left margin of a line highlights mechanisms for
restricting the adversary (e.g., to forbid trivial attacks). Almost all remaining parts
of the game equally appear in game FUNC in Figure 6.1 and are less important
for understanding the security definition. For an explanation of the used variables
see Table 6.4.

269

6 Systematization of Models for Key Exchange in Groups

Discussion of the Model With respect to the required security,
our aim is only to give an example definition. As indicated before, we
believe that optimal security for GKE is usually undesired and we are
not under the illusion that there exists a unified definition of security
on which the literature should or aims to agree on. Our contribution
is instead that we provide a simple, compact, and precise framework
that generically captures GKE and in which the restriction of the ad-
versary (which essentially models the required security) can easily be
adjusted. Thereby it achieves all properties that we declare desirable
in our systematization of knowledge. To name only some advantages
of our model: 1. it allows for participation of multiple instances per
party per session, 2. it covers unauthenticated, symmetric-key au-
thenticated, and public-key authenticated settings, 3. it imposes no
form of key distribution mechanism on GKE constructions and their
environment, 4. neither does it impose a consensus mechanism for uni-
fying all session participants’ views on the session (although they can
be implemented on top), 5. it fits for any variant of protocol-specific
membership operations, 6. thereby it formulates natural generic (pro-
gramming) interfaces through the syntax, 7. it outputs the context
of group keys along the group keys themselves to upper-layer appli-
cations, 8. thereby it allows for actual asynchronous protocol exe-
cutions in which not all participants need to agree upon the same
order of group key computations, 9. it defines partnering naturally
via the context that the protocol itself declares for each group key,
10. it illustrates how a generic model can allow for protocol-dependent
definitions of contexts for group keys, 11. thereby it respects the re-
quirements of composition results [BFWW11], 12. it naturally gives
adversaries in the security experiment full power in executing the pro-
tocol algorithms and determining their public inputs, 13. and it can
easily express different strengths of security.

This model consequently fulfills its main purpose: demonstrating
that the desired properties from our systematization framework do
not conflict and can hence be achieved simultaneously.

270

6.5 Discussion

6.5 Discussion

Our systematization of knowledge reveals some shortcomings in the
GKE literature, stemming from a tendency to design a security model
hand-in-hand with a protocol to be proven; such a model tends to
be less generic, making specific assumptions about characteristics of
the protocols it can be used for or the application environment with
which it interacts. Sometimes the application environment appeared
to be fully neglected. We have tried to revisit the underlying concepts
of GKE and take into account the broad spectrum of requirements
that may arise from the context in which a GKE protocol may be
used, such as the type and distribution of authentication credentials
of parties, how groups are formed and administered, and whether
parties can have multiple devices in the same group. The goal is
not to develop a single unified model of group key exchange security,
but to support the development of models within the GKE literature
that are well-informed by the principle requirements of GKE. Our
prototype model demonstrates that these desirable properties of GKE
can be satisfied within one generic model, with reduced complexity
and increased precision.
Looking forward, group key exchange is on track for increasing

complexity. There now exist prominent applications requiring group
key exchange—group instant messaging, videoconferencing—and us-
ing a cryptographic protocol in a real-world setting invariably leads to
greater complexity in modeling and design. Moreover, the desire for
novel properties such as highly dynamic groups and post-compromise
security using ratcheting, manifested in proposed standards such as
MLS, make it all the more important to have a clear approach to
modeling the security of group key exchange.

6.5.1 The Relation between Parties and Instances

Even with our systematic approach some semantic interpretations of
modeling choices are not ultimately determined. One example that
we discuss here is that it remains debatable whether local instances

271

6 Systematization of Models for Key Exchange in Groups

or parties are the actual participants of sessions. In the instance-
centric perspective, instances are active entities that may or may
not represent passive parties. The term party would thereby only
refer to static objects that embody authentication secrets whereas
instances would be considered active entities that potentially make use
of these static objects. In the party-centric perspective, instances
are only realizations of parties’ participation in sessions. Parties would
thereby actively outsource the execution of algorithms, necessary for
participating in sessions, to their instances. As this distinction may
appear as quibble on a language level, we clarify technical differences
below.

Instance-Centric Perspective We first consider a setting that,
except for our own model from Chapter 5, neither of the publications,
analyzed in this chapter, covers: unauthenticated GKE. In unauthen-
ticated GKE the concept of parties remains unclear. While parties
usually refer to permanent entities, participants of unauthenticated
GKE session only temporarily exist during their participation. Addi-
tionally, parties are often linked to authentication secrets. According
to this interpretation, parties do not exist in unauthenticated GKE
such that only instances could be participants of sessions. Secondly, if
instances are the actual participants of sessions, it can be reasonable
to allow simultaneous participation of multiple instances per party in
sessions. This can be a useful feature for multi-device settings (e.g.,
in instant messaging). Thirdly, GKE is never a primitive used by
humans but a tool used by other cryptographic applications. GKE
instances, executing the participation in a GKE session, may thereby
be initiated by instances of the upper layer cryptographic application
rather than by a central GKE party. Thereby the concept of a party
collapses to some static information (e.g., authentication secrets) that
these GKE instances use.

Party-Centric Perspective If parties are active participants of
sessions (i.e., members thereof) trough their instances, participation

272

6.5 Discussion

in a single session through multiple instances per party is contradic-
tory. Therefore settings in which human users participate in a session
with multiple devices would need to be modeled by declaring each
device of a user an individual party. We note that sharing authen-
tication secrets between these “device-parties” would be considered
insecure in all analyzed models. Nevertheless, the concept of active
parties and their realization through controlled instances intuitively
describes the idea of (authenticated) entities using the GKE protocol
for deriving group keys more comprehensibly than the instance-centric
perspective. Even if GKE instances are locally initiated by distributed
instances of the cryptographic application that uses the group keys,
one can trace the initialization of these application instances back to
a central active party. As application executions of the same party
are in reality usually initiated and managed centrally, conceiving this
central party as an active entity instead of its multiple local instances
appears to be practical.
We believe that neither of both perspectives describes the essential

truth and preferences for either of them may depend on the individ-
ual understanding of what parties and instances are in reality. Nev-
ertheless, for modeling GKE one needs to commit to either of them,
implicating the respective consequences described above. As all but
one analyzed models adopt the party-centric perspective (see the first
three rows in Table 6.1), the terminology in our comparison is cho-
sen accordingly. However, since this intuitively restricts parties from
participating in sessions with multiple of their instances, we chose the
instance-centric perspective in our proposed model.

273

7
Conclusions and Outlook

The core of this thesis is the analysis of cryptographic definitions and
constructions for components in modern messaging applications. The
main technique of these components that we consider is the continuous
updating of key material. Our consideration includes and affects many
different more general aspects in cryptography that we contextualize
after a short summary of the main chapters in this thesis.

7.1 Overview

In Chapter 3, we provide a systematic and, due to our holistic ap-
proach, potentially even fundamental study of continuous key ex-
change in the two-party setting. Instead of understanding the under-
lying idea of ratcheting from the construction-perspective, we leverage
the approach by Bellare et al. [BSJ+17] that defines syntax, correct-
ness, and security naturally with respect to what this cryptographic
primitive can and potentially should provide in theory. Recall that,
in this initial unidirectional variant, Alice and Bob jointly compute
local states, and then Alice establishes keys for both users by sending
ciphertexts to Bob. We redefine the corresponding security notion by
Bellare at al. that impractically forbids adversarial exposures of Bob’s
local state. In our notion, both user states can permanently be ex-
posed, and we require that these exposures affect the secrecy of keys
minimally. We then lift our unidirectional variant to the fully bidirec-
tional interaction setting in two meaningfully incremental steps. With
this incremental approach, we reduce the significantly increased com-
plexity of concurrent, bidirectional ratcheting in our corresponding se-
curity definitions and provably secure ratcheting constructions. These

275

7 Conclusions and Outlook

new strongly secure, almost practical constructions—besides confirm-
ing satisfiability of our notions—reveal and illustrate an interesting
gap in the cryptographic hardness of ratcheting: while our unidirec-
tional scheme can be implemented with standard building blocks, we
introduce key-updatable public key encryption to achieve security in
the bidirectional setting.
This gap is further analyzed in Chapter 4, where we identify clear

conditions under which key-updatable public key encryption is indeed
necessary to realize ratcheting. Interestingly, this gap is not anchored
between unidirectional and bidirectional ratcheting but already occurs
in the unidirectional setting depending on the permitted adversarial
power. With this result, we underline the importance of the utilized
key-updating techniques for ratcheting, but also indicate how relying
on them can be bypassed in order to achieve better performance. In
the course of proving this relation, we develop a security definition of
unidirectional ratcheting that also takes attacks against protocol ex-
ecutions’ randomness into account. As we thereby follow our puristic
definitional approach, a second core outcome in this chapter is our
more practical and meaningfully stronger natural security notion of
ratcheting.
In Chapter 5, we turn to the group setting in ratcheting and an-

alyze its communication costs in case multiple group members send
concurrently. Although concurrency has been extensively discussed in
this context, specifically with respect to the current IETF Messaging
Layer Security (MLS) initiative1, none of the previous constructions
was able to provide satisfying solutions. Again, we break away from
the construction-perspective that, except for our work, is prevalent in
the literature on group ratcheting, and instead consider this primi-
tive from a theoretic point of view. To analyze the minimal necessary
communication overhead that is required for achieving security af-
ter adversarial state exposures under concurrent sending, we adopt a
proof technique that has so far only been used once for a similar pur-

1For example here: https://mailarchive.ietf.org/arch/msg/mls/
oSArWtEqBzF1s5BpXGX11jaZrFI/

276

https://mailarchive.ietf.org/arch/msg/mls/oSArWtEqBzF1s5BpXGX11jaZrFI/
https://mailarchive.ietf.org/arch/msg/mls/oSArWtEqBzF1s5BpXGX11jaZrFI/

7.1 Overview

pose [MP04]: We develop a symbolic execution model that captures
group ratcheting generically insofar that group ratcheting construc-
tions are, by the model, meaningfully and practically limited in their
use of cryptographic building blocks. In this model, we are able to
prove that a communication overhead linear in the number of con-
currently sending group members is inevitable. To complement this
lower bound, we provide a simple, provably secure group ratcheting
construction that has an almost tightly matching upper bound in com-
munication complexity. These results may influence the design of the
current or future standardized schemes in the MLS initiative. Further-
more, our lower bound manifests a theoretic limit in the performance
of group ratcheting. Finally, our proof technique emphasizes the use-
fulness of, and may renew the interest in, symbolic modeling for the
purpose of analyzing (communication) complexity limits.

Our systematizing view on according security models in Chapter 6
illustrates that the research on group ratcheting and, more generally,
on group key exchange is indeed primarily construction-driven. One
of our main motivations to systematize game-based security models of
group key exchange in the literature is our conviction that the progress
of research on a cryptographic primitive is significantly influenced by
the clarity of its abstract conception. We review established syntax,
correctness, and security definitions to clarify their suitability with
respect to how they cover and restrict reality, and which (undesir-
able) implications they entail. Thereby, we also integrate practical
requirements that arise from modern group ratcheting research. We
discuss and compare contained solution strategies and label desirable
approaches. Since no considered security model fulfills all characteris-
tics that we regard desirable, and in order to show that these charac-
teristics are fully compatible and achievable, we conclude this chapter
with a corresponding simple and generic security model for group key
exchange. With these results, we aim to support the emerging re-
search on group ratcheting by proposing a clearer and more general
concept of it.

277

7 Conclusions and Outlook

7.2 Statefulness

A common property of all cryptographic primitives in this thesis is
that they make use of a local modifiable state that stores user secrets.
The way that this state is exploited to reach better security guarantees
is relatively new in cryptographic literature.

Our Contributions With our definitions and constructions from
chapters 3 and 4, we are the first to determine the theoretical opti-
mum of security (here: secrecy of keys) that can be achieved by ex-
ploiting statefulness in two-party ratcheting. Similarly, with our sym-
bolic analysis in Chapter 5, we are the first to determine the minimal
communication complexity achievable in concurrent group ratcheting
due to exploitation of statefulness. Finally, our equivalence result
from Chapter 4 reduces statefulness of ratcheting to the simpler and
more fundamental concept of public key encryption with updatable
key pairs. These contributions illustrate that exploiting local user
states is a very powerful and yet relatively sparsely explored tool in
cryptography—simply enabled by adding to the syntax of algorithms
an input and output parameter (see Section 7.3).

Open Questions and Future Work The main security goal that
we consider in this thesis, and that is also primarily achieved by the
regarded cryptographic primitives, is confidentiality. Exploiting state-
fulness is potentially also supportive for other security goals such as
authentication, or privacy goals such as anonymity. We believe that
continuing our steps in the analysis of stateful cryptography by in-
cluding these goals is promising. An orthogonal goal, enabled by the
exploitation of a user state, could be performance. Note that intro-
ducing a user state is not necessarily accompanied by strengthened
adversaries. Hence, instead of increasing adversarial power and aim-
ing for optimal security under introduced statefulness, constructions
could utilize their state for better efficiency under steady security re-
quirements.

278

7.3 Defining Syntax, Correctness, and Security

7.3 Defining Syntax, Correctness, and
Security

In our security notions, we attach great importance to methodically
and carefully defining all components: syntax, correctness, and secu-
rity. Especially in emerging research topics, like (group) ratcheting,
we think that systematic considerations of the abstract concepts are
vital to maintaining comprehensibility and comparability from the be-
ginning. However, with our results from Chapter 6, we illustrate that
these modeling definitions, constituting the system’s core and theo-
retic hub for a primitive in cryptography, often only play a secondary
role, even in established literature.

Our Contributions With our definitions from chapters 3, 4, and 6,
we are the first to introduce simple, generic, powerful, and clear syntax
notions, light correctness requirements, and natural security defini-
tions that minimally restrict adversaries for the respective primitives.
It is clear that methodical approaches are not superior per se. Note,
for example, that some of our constructions, for achieving the required
strong security, are relatively impractical. However, we believe that
methodical analyses are necessary to explore the possibilities and lim-
its of a cryptographic primitive, and expose internal components with
their respective relations and properties. With our strategy, we are,
for example, able to unveil interesting relations between ratcheting
and key-updatable public key encryption in Chapter 4. A core contri-
bution regarding systematic modeling is, of course, our systematizing
literature review in Chapter 6 in which we examine generality, useful-
ness, and comparability of existing syntax, correctness, and security
notions, and provide a precise, significantly simpler, and more generic
model.

Open Questions and Future Work Our contributions are only
limited to specific primitives, but our results may indicate that syn-
tax specifications, when defining security, are far more influential than

279

7 Conclusions and Outlook

currently understood. However, most syntax notions seemingly base
on arbitrary human decisions. Equally, many security definitions (es-
pecially in key exchange) are based on human intuition.
Although defining correctness and syntax seems to be acknowledged

as an inherently ambiguous process, a clearer understanding of natu-
rally existing relations between syntax and security is desirable from
our perspective. For example, we believe that a fundamental analy-
sis of power induced by permitted inputs and outputs of algorithms
(e.g., associated-data inputs, permanently accessible, modifiable state,
static asymmetric public inputs, static asymmetric and symmetric se-
cret inputs, etc.) is due. A first step towards this analysis could be
a systematization of syntax notions and an exploration of general se-
mantics that are already intuitively and, hence, implicitly included
in existing cryptographic syntax definitions. For example, the role of
associated data seems abstractly clear; it seems, however, less under-
stood whether associated data should be treated as public or secret
information (as for nonces [BNT19]), whether it is a symmetric input
for all involved users or only input once and then derivable for all re-
maining users (cf. secret sharing [BDR20a]), etc. Developing natural
approaches of defining syntax, and deriving correctness and security
from it, similar to the security up to correctness formalization by Ro-
gaway and Zhang [RZ18], could extend this step in an interesting
direction for future research.

7.4 Continuous State Updates

The primary construction technique for satisfying security require-
ments in this thesis is updating the key material in local user states.
This technique is essentially inspired by its integration in modern mes-
sengers, specifically in Signal’s Double Ratchet Algorithm [PM16].

Our Contributions Our construction of unidirectional ratcheting
from Chapter 3 is the first that generalizes utilized asymmetric cryp-
tographic building blocks. While all previous works from practice and

280

7.4 Continuous State Updates

academia propose ad-hoc ratcheting designs based on specific Diffie–
Hellman groups, we expose the actually required properties by us-
ing generic key encapsulation mechanisms. With our constructions of
sesqui- and bidirectional ratcheting from Chapter 3, we are the first to
introduce key-updatable key encapsulation mechanisms as an entirely
new update technique to achieve strong forward-secrecy for asymmet-
ric key material. Abstractly, it can be seen as the asymmetric coun-
terpart of symmetric key updates via hash-chains. By proving that
these key-updatable techniques are indeed necessary to build strongly
secure ratcheting in Chapter 4, we underline their importance. In our
upper bound construction for group ratcheting from Chapter 5, we
are the first to show how concurrently initiated state updates can be
used to effectively recover from exposed secrets. For this we employ
techniques from broadcast encryption.

Open Questions and Future Work So far, our strongly secure
asymmetric key-update technique has only been implemented generi-
cally from (inefficient) hierarchical identity-based encryption (HIBE).
As discussed in Chapter 4, it is, however, evident that weaker assump-
tions are sufficient. Finding a more efficient instantiation for key-
updatable key encapsulation mechanisms remains an open problem.
In a recently proposed optimally secure group ratcheting construc-
tion [ACJM20] key updates are realized via HIBE directly. Hence,
analyzing corresponding hardness relations in the group setting re-
mains an open problem as well.
Our security definition of group ratcheting in Chapter 5 requires

recovery from state exposures only with a delay by one-round. We
justify this relaxation in recovery speed with otherwise seemingly nec-
essary use of multi-party non-interactive key exchange. An interesting
open problem is to prove this necessity. On the construction side, we
developed an unpublished, more complex but also slightly more ef-
ficient concurrent group ratcheting design from black-box broadcast
encryption. Exploring whether recent successes in optimally efficient
broadcast encryption [AY20] are furthermore applicable to achieve

281

7 Conclusions and Outlook

better performance also remains an interesting question for future
work.

7.5 Asynchronicity

Providing functionality under minimal reliability guarantees from the
environment is a key feature of practical messaging applications. The
Signal protocol is, for example, equipped with very practical tech-
niques to handle asynchronous communication. Generally, it is also
necessary for the ratcheting component in messaging apps that they
can handle asynchronous interaction between the session participants.

Our Contributions We are the first to formally model asynchronous
interaction in ratcheting with our definitions from Chapter 3. With
these definitions and our accordingly secure constructions, we inves-
tigate the tension between optimal security, asynchronous commu-
nication, and performance. For example, we justify the use of key-
updatable techniques in our bidirectionally interactive constructions
with an example attack that exploits permitted concurrency: the ad-
versary lets Bob recover from an exposure and simultaneously imper-
sonates Alice undetectably towards Bob, which is required to remain
harmless. Concurrent sending in groups is the focus of our analysis
in Chapter 5, with which we are the first to solve concurrent state
recovery in groups and determine necessary and sufficient communi-
cation costs induced by it. Nevertheless, our communication model in
Chapter 5 still relies on a weak form of synchronicity: a reliable round
schedule (i.e., synchronized clocks).

Open Questions and FutureWork Lifting our results from Chap-
ter 5 to the fully asynchronous setting remains an open problem. An-
other interesting question is raised by the functionality guarantees of
Signal: This protocol can recover from state exposures even under out
of order receipts and message loss. The security analysis by Alwen et
al. [ACD19] took account of this, but neither an analysis of potential

282

7.6 Two Perspectives on Problems

improvements in performance or security, nor an extension to group
conversation exists.

7.6 Two Perspectives on Problems

We think that one core contribution of our work is that we consider all
research questions from two perspectives: Finding a concrete solution
that satisfies the requirements of a raised problem, and analyzing the
respective limits of satisfiability in general.
With our unidirectional ratcheting construction from Chapter 3,

we demonstrate the sufficiency of generic key encapsulation mecha-
nisms; The necessity of key encapsulation mechanisms for this notion
of ratcheting is trivially evident. Our analysis in Chapter 4 is exclu-
sively devoted to understanding the necessary and sufficient condi-
tions for realizing strongly secure ratcheting from key-updatable key
encapsulation mechanisms. Also with our consideration of concurrent
group ratcheting in Chapter 5 we prove almost tight lower and upper
bounds of communication complexity. In a broader sense even our
systematization from Chapter 6 includes the discovery of desirable
characteristics of group key exchange models for which we show with
our new model that they are indeed satisfiable. Finally, even in work
that has been conducted independent of this thesis, we follow this ap-
proach: for our design of authenticated encryption combiners [PR20],
we show that any combiner, invoking every algorithm of each under-
lying scheme at most once, is insecure; our proposed secure combiner
invokes the underlying schemes’ algorithms exactly once plus one ex-
tra invocation of one of these algorithms.
We believe that this approach is essential for justifying a proposed

solution, showing that it does not only meet the necessary require-
ments, but it meets these requirements with little (potentially even
minimal) overhead.

283

7 Conclusions and Outlook

7.7 Impact
Many of our results are foremost influential on the academic research
itself as they constitute clear frameworks, point out theoretic possibil-
ities and limits, as well as conceptualize relations. Their applicability
on practice is yet not entirely foreseeable, but a better understand-
ing of abstract concepts can be an important catalyst for a research
field—eventually enabling practical solutions.
Some of our results directly contribute to solutions for questions

from practice. Most importantly, our concurrent group ratcheting
scheme is immediately applicable to the standardization effort of the
MLS initiative.
In this chapter we point out various open questions and promis-

ing research directions that can extend our results. We think that
revealing open problems and indicating room for generalization may
be one of our main contributions and can significantly impact future
research.

284

Bibliography

[ACC+19a] Joël Alwen, Margarita Capretto, Miguel Cueto,
Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep
the dirt: Tainted treekem, an efficient and provably se-
cure continuous group key agreement protocol. Cryp-
tology ePrint Archive, Report 2019/1489, 2019. https:
//eprint.iacr.org/2019/1489.

[ACC+19b] Joël Alwen, Margarita Capretto, Miguel Cueto,
Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep
the dirt: Tainted treekem, an efficient and provably se-
cure continuous group key agreement protocol. Cryp-
tology ePrint Archive, Report 2019/1489, 2019. Fixed
version of [ACC+19a] for detailed comparison: https://
eprint.iacr.org/2019/1489 downloaded 2020-02-13.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: Security notions, proofs, and modular-
ization for the Signal protocol. In Yuval Ishai and Vin-
cent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 129–158, Darmstadt, Germany,
May 19–23, 2019. Springer, Heidelberg, Germany.

[ACDT19] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis
Tselekounis. Security analysis and improvements for the
IETF MLS standard for group messaging. Cryptology
ePrint Archive, Report 2019/1189, 2019. Fixed version
of [ACDT20] for detailed comparison: https://eprint.
iacr.org/2019/1189 downloaded 2020-02-13.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis

285

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189

Bibliography

Tselekounis. Security analysis and improvements for the
IETF MLS standard for group messaging. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances
in Cryptology – CRYPTO 2020, Part I, volume 12170
of Lecture Notes in Computer Science, pages 248–277,
Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mu-
larczyk. Continuous group key agreement with active
security. In Theory of Cryptography - 18th International
Conference, TCC 2020, November 15-19, 2020, Proceed-
ings, Lecture Notes in Computer Science. Springer, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broad-
cast encryption from pairings and LWE. In Anne Can-
teaut and Yuval Ishai, editors, Advances in Cryptology
– EUROCRYPT 2020, Part I, volume 12105 of Lecture
Notes in Computer Science, pages 13–43, Zagreb, Croa-
tia, May 10–14, 2020. Springer, Heidelberg, Germany.

[BBM+20a] R. Barnes, B. Beurdouche, J. Millican, E. Omara,
K. Cohn-Gordon, and R. Robert. The messag-
ing layer security (mls) protocol. Technical report,
2020. https://datatracker.ietf.org/doc/draft-
ietf-mls-protocol/.

[BBM+20b] R. Barnes, B. Beurdouche, J. Millican, E. Omara,
K. Cohn-Gordon, and R. Robert. The messaging
layer security (MLS) protocol draft-ietf-mls-protocol-09.
Internet-draft, September 2020.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Pala-
cio. An uninstantiable random-oracle-model scheme for
a hybrid-encryption problem. In Christian Cachin and
Jan Camenisch, editors, Advances in Cryptology – EU-
ROCRYPT 2004, volume 3027 of Lecture Notes in Com-

286

https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/

Bibliography

puter Science, pages 171–188, Interlaken, Switzerland,
May 2–6, 2004. Springer, Heidelberg, Germany.

[BCP01] Emmanuel Bresson, Olivier Chevassut, and David
Pointcheval. Provably authenticated group Diffie-
Hellman key exchange – the dynamic case. In Colin Boyd,
editor, Advances in Cryptology – ASIACRYPT 2001, vol-
ume 2248 of Lecture Notes in Computer Science, pages
290–309, Gold Coast, Australia, December 9–13, 2001.
Springer, Heidelberg, Germany.

[BCP02a] Emmanuel Bresson, Olivier Chevassut, and David
Pointcheval. Dynamic group Diffie-Hellman key exchange
under standard assumptions. In Lars R. Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 321–
336, Amsterdam, The Netherlands, April 28 – May 2,
2002. Springer, Heidelberg, Germany.

[BCP02b] Emmanuel Bresson, Olivier Chevassut, and David
Pointcheval. Group Diffie-Hellman key exchange secure
against dictionary attacks. In Yuliang Zheng, editor,
Advances in Cryptology – ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 497–
514, Queenstown, New Zealand, December 1–5, 2002.
Springer, Heidelberg, Germany.

[BCPQ01] Emmanuel Bresson, Olivier Chevassut, David
Pointcheval, and Jean-Jacques Quisquater. Prov-
ably authenticated group Diffie-Hellman key exchange.
In Michael K. Reiter and Pierangela Samarati, editors,
ACM CCS 2001: 8th Conference on Computer and
Communications Security, pages 255–264, Philadelphia,
PA, USA, November 5–8, 2001. ACM Press.

[BD95] Mike Burmester and Yvo Desmedt. A secure and efficient
conference key distribution system (extended abstract).

287

Bibliography

In Alfredo De Santis, editor, Advances in Cryptology –
EUROCRYPT’94, volume 950 of Lecture Notes in Com-
puter Science, pages 275–286, Perugia, Italy, May 9–12,
1995. Springer, Heidelberg, Germany.

[BD05] Mike Burmester and Yvo Desmedt. A secure and scal-
able group key exchange system. Inf. Process. Lett.,
94(3):137–143, 2005.

[BDR20a] Mihir Bellare, Wei Dai, and Phillip Rogaway. Reimag-
ining secret sharing: Creating a safer and more versatile
primitive by adding authenticity, correcting errors, and
reducing randomness requirements. Proc. Priv. Enhanc-
ing Technol., 2020(4):461–490, 2020.

[BDR20b] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler.
On the price of concurrency in group ratcheting proto-
cols. In Theory of Cryptography - 18th International Con-
ference, TCC 2020, Virtual, November 15-19, 2020, Pro-
ceedings, Lecture Notes in Computer Science. Springer,
2020.

[BDR20c] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler.
On the price of concurrency in group ratcheting pro-
tocols. Cryptology ePrint Archive, Report 2020/1171,
2020. https://eprint.iacr.org/2020/1171.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi,
and Stephen C. Williams. Composability of Bellare-
Rogaway key exchange protocols. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, ACM CCS 2011:
18th Conference on Computer and Communications Se-
curity, pages 51–62, Chicago, Illinois, USA, October 17–
21, 2011. ACM Press.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-
the-record communication, or, why not to use PGP. In

288

https://eprint.iacr.org/2020/1171

Bibliography

Vijay Atluri, Paul F. Syverson, and Sabrina De Capi-
tani di Vimercati, editors, Proceedings of the 2004 ACM
WPES 2004, Washington, DC, USA, October 28, 2004,
pages 77–84. ACM, 2004.

[BGK+18] Dan Boneh, Darren Glass, Daniel Krashen, Kristin
Lauter, Shahed Sharif, Alice Silverberg, Mehdi Tibouchi,
and Mark Zhandry. Multiparty non-interactive key ex-
change and more from isogenies on elliptic curves. Cryp-
tology ePrint Archive, Report 2018/665, 2018. https:
//eprint.iacr.org/2018/665.

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Sub-
tleties in the definition of IND-CCA: When and how
should challenge decryption be disallowed? Journal of
Cryptology, 28(1):29–48, January 2015.

[BL15] Mihir Bellare and Anna Lysyanskaya. Symmetric and
dual PRFs from standard assumptions: A generic val-
idation of an HMAC assumption. Cryptology ePrint
Archive, Report 2015/1198, 2015. http://eprint.
iacr.org/2015/1198.

[BNT19] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces
are noticed: AEAD revisited. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 235–265, Santa Bar-
bara, CA, USA, August 18–22, 2019. Springer, Heidel-
berg, Germany.

[Box76] George EP Box. Science and statistics. Journal of the
American Statistical Association, 71(356):791–799, 1976.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentica-
tion and key distribution. In Douglas R. Stinson, edi-
tor, Advances in Cryptology – CRYPTO’93, volume 773

289

https://eprint.iacr.org/2018/665
https://eprint.iacr.org/2018/665
http://eprint.iacr.org/2015/1198
http://eprint.iacr.org/2015/1198

Bibliography

of Lecture Notes in Computer Science, pages 232–249,
Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany.

[BRV20a] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determin-
ing the core primitive for optimally secure ratcheting. In
Advances in Cryptology - ASIACRYPT 2020 - 26th In-
ternational Conference on the Theory and Application of
Cryptology and Information Security, Virtual, December
7-11, 2020, Proceedings, Lecture Notes in Computer Sci-
ence, 2020.

[BRV20b] Fatih Balli, Paul Rösler, and Serge Vaudenay. Deter-
mining the core primitive for optimally secure ratchet-
ing. Cryptology ePrint Archive, Report 2020/148, 2020.
https://eprint.iacr.org/2020/148.

[BS02] Dan Boneh and Alice Silverberg. Applications of multi-
linear forms to cryptography. Cryptology ePrint Archive,
Report 2002/080, 2002. http://eprint.iacr.org/
2002/080.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya
Nyayapati, and Igors Stepanovs. Ratcheted encryp-
tion and key exchange: The security of messaging. In
Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part III, volume 10403
of Lecture Notes in Computer Science, pages 619–650,
Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd Annual
Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

290

https://eprint.iacr.org/2020/148
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080

Bibliography

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin
Dowling, Luke Garratt, and Douglas Stebila. A formal
security analysis of the Signal messaging protocol. In
2017 IEEE EuroS&P 2017, Paris, France, April 26-28,
2017, pages 451–466. IEEE, 2017.

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Gar-
ratt. On post-compromise security. In IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, June 27 - July 1, 2016, pages 164–178.
IEEE Computer Society, 2016.

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon
Millican, and Kevin Milner. On ends-to-ends encryp-
tion: Asynchronous group messaging with strong security
guarantees. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018:
25th Conference on Computer and Communications Se-
curity, pages 1802–1819, Toronto, ON, Canada, Octo-
ber 15–19, 2018. ACM Press.

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen,
Håkon Jacobsen, and Tibor Jager. Highly efficient key
exchange protocols with optimal tightness. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part III, volume 11694
of Lecture Notes in Computer Science, pages 767–797,
Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[CDV19] Andrea Caforio, F Betül Durak, and Serge Vaudenay.
On-demand ratcheting with security awareness. Cryp-
tology ePrint Archive, Report 2019/965, 2019. https:
//eprint.iacr.org/2019/965.

[CGH98a] Ran Canetti, Oded Goldreich, and Shai Halevi. The ran-
dom oracle methodology, revisited. Cryptology ePrint

291

https://eprint.iacr.org/2019/965
https://eprint.iacr.org/2019/965

Bibliography

Archive, Report 1998/011, 1998. http://eprint.iacr.
org/1998/011.

[CGH98b] Ran Canetti, Oded Goldreich, and Shai Halevi. The ran-
dom oracle methodology, revisited (preliminary version).
In 30th Annual ACM Symposium on Theory of Comput-
ing, pages 209–218, Dallas, TX, USA, May 23–26, 1998.
ACM Press.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. In
Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 207–222, Inter-
laken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

[CHK19] Cas Cremers, Britta Hale, and Konrad Kohbrok. Effi-
cient post-compromise security beyond one group. Cryp-
tology ePrint Archive, Report 2019/477, 2019. https:
//eprint.iacr.org/2019/477.

[CNE+14] Stephen Checkoway, Ruben Niederhagen, Adam Ev-
erspaugh, Matthew Green, Tanja Lange, Thomas Ris-
tenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav
Shacham, and Matthew Fredrikson. On the practical ex-
ploitability of dual EC in TLS implementations. In Kevin
Fu and Jaeyeon Jung, editors, USENIX Security 2014:
23rd USENIX Security Symposium, pages 319–335, San
Diego, CA, USA, August 20–22, 2014. USENIX Associ-
ation.

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the TLS 1.3
handshake protocol candidates. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015:

292

http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477

Bibliography

22nd Conference on Computer and Communications Se-
curity, pages 1197–1210, Denver, CO, USA, October 12–
16, 2015. ACM Press.

[DJSS18] David Derler, Tibor Jager, Daniel Slamanig, and
Christoph Striecks. Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, Part III,
volume 10822 of Lecture Notes in Computer Science,
pages 425–455, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

[DRS20] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flex-
ible authenticated and confidential channel establishment
(fACCE): Analyzing the noise protocol framework. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International
Conference on Theory and Practice of Public Key Cryp-
tography, Part I, volume 12110 of Lecture Notes in Com-
puter Science, pages 341–373, Edinburgh, UK, May 4–7,
2020. Springer, Heidelberg, Germany.

[DV18] F. Betül Durak and Serge Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement with linear complex-
ity. Cryptology ePrint Archive, Report 2018/889, 2018.
https://eprint.iacr.org/2018/889.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asyn-
chronous ratcheted key agreement with linear complexity.
In Nuttapong Attrapadung and Takeshi Yagi, editors,
IWSEC 19: 14th International Workshop on Security,
Advances in Information and Computer Security, volume
11689 of Lecture Notes in Computer Science, pages 343–
362, Tokyo, Japan, August 28–30, 2019. Springer, Hei-
delberg, Germany.

293

https://eprint.iacr.org/2018/889

Bibliography

[DY81] Danny Dolev and Andrew Chi-Chih Yao. On the secu-
rity of public key protocols (extended abstract). In 22nd
Annual Symposium on Foundations of Computer Sci-
ence, pages 350–357, Nashville, TN, USA, October 28–30,
1981. IEEE Computer Society Press.

[EMP18] Patrick Eugster, Giorgia Azzurra Marson, and Bertram
Poettering. A cryptographic look at multi-party chan-
nels. In 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12,
2018, pages 31–45. IEEE Computer Society, 2018.

[FG14] Marc Fischlin and Felix Günther. Multi-stage key ex-
change and the case of Google’s QUIC protocol. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014: 21st Conference on Computer and Communi-
cations Security, pages 1193–1204, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press.

[FG17] Marc Fischlin and Felix Günther. Replay attacks on zero
round-trip time: The case of the TLS 1.3 handshake can-
didates. In 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28,
2017, pages 60–75. IEEE, 2017.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In
Douglas R. Stinson, editor, Advances in Cryptology –
CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 480–491, Santa Barbara, CA, USA, Au-
gust 22–26, 1994. Springer, Heidelberg, Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194, Santa Barbara, CA, USA, Au-
gust 1987. Springer, Heidelberg, Germany.

294

Bibliography

[GBG09] M. Choudary Gorantla, Colin Boyd, and Juan Manuel
González Nieto. Modeling key compromise imperson-
ation attacks on group key exchange protocols. In Stanis-
law Jarecki and Gene Tsudik, editors, PKC 2009: 12th
International Conference on Theory and Practice of Pub-
lic Key Cryptography, volume 5443 of Lecture Notes in
Computer Science, pages 105–123, Irvine, CA, USA,
March 18–20, 2009. Springer, Heidelberg, Germany.

[GHJL17] Felix Günther, Britta Hale, Tibor Jager, and Sebastian
Lauer. 0-RTT key exchange with full forward secrecy. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part III,
volume 10212 of Lecture Notes in Computer Science,
pages 519–548, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering.
KEM combiners. In Michel Abdalla and Ricardo Da-
hab, editors, PKC 2018: 21st International Conference
on Theory and Practice of Public Key Cryptography,
Part I, volume 10769 of Lecture Notes in Computer Sci-
ence, pages 190–218, Rio de Janeiro, Brazil, March 25–29,
2018. Springer, Heidelberg, Germany.

[GMR+16] Martin Grothe, Christian Mainka, Paul Rösler, Johanna
Jupke, Jan Kaiser, and Jörg Schwenk. Your cloud in
my company: Modern rights management services revis-
ited. In 11th International Conference on Availability,
Reliability and Security, ARES 2016, Salzburg, Austria,
August 31 - September 2, 2016, pages 217–222. IEEE
Computer Society, 2016.

[GMRS16] Martin Grothe, Christian Mainka, Paul Rösler, and Jörg
Schwenk. How to break Microsoft rights management
services. In Natalie Silvanovich and Patrick Traynor, ed-

295

Bibliography

itors, 10th USENIX Workshop on Offensive Technolo-
gies, WOOT 16, Austin, TX, USA, August 8-9, 2016.
USENIX Association, 2016.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based
cryptography. In Yuliang Zheng, editor, Advances in
Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566, Queenstown,
New Zealand, December 1–5, 2002. Springer, Heidelberg,
Germany.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds
on the efficiency of generic cryptographic constructions.
In 41st Annual Symposium on Foundations of Com-
puter Science, pages 305–313, Redondo Beach, CA, USA,
November 12–14, 2000. IEEE Computer Society Press.

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J. Alex Halderman. Mining your ps and qs: Detection of
widespread weak keys in network devices. In Tadayoshi
Kohno, editor, USENIX Security 2012: 21st USENIX
Security Symposium, pages 205–220, Bellevue, WA, USA,
August 8–10, 2012. USENIX Association.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast en-
cryption scheme. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 47–60, Santa Bar-
bara, CA, USA, August 18–22, 2002. Springer, Heidel-
berg, Germany.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the
provable consequences of one-way permutations. In 21st
Annual ACM Symposium on Theory of Computing, pages
44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press.

296

Bibliography

[ITW82] Ingemar Ingemarsson, Donald Tang, and C Wong. A
conference key distribution system. IEEE Transactions
on Information Theory, 28(5):714–720, 1982.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Effi-
cient ratcheting: Almost-optimal guarantees for secure
messaging. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part I,
volume 11476 of Lecture Notes in Computer Science,
pages 159–188, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.

[JS18a] Joseph Jaeger and Igors Stepanovs. Optimal chan-
nel security against fine-grained state compromise: The
safety of messaging. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part I, volume 10991 of Lecture Notes
in Computer Science, pages 33–62, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Heidelberg, Ger-
many.

[JS18b] Joseph Jaeger and Igors Stepanovs. Optimal chan-
nel security against fine-grained state compromise: The
safety of messaging. Cryptology ePrint Archive, Report
2018/553, 2018. https://eprint.iacr.org/2018/553.

[KLL04] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee.
Constant-round authenticated group key exchange for
dynamic groups. In Pil Joong Lee, editor, Advances in
Cryptology – ASIACRYPT 2004, volume 3329 of Lecture
Notes in Computer Science, pages 245–259, Jeju Island,
Korea, December 5–9, 2004. Springer, Heidelberg, Ger-
many.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling insider at-
tacks on group key-exchange protocols. In Vijayalakshmi
Atluri, Catherine Meadows, and Ari Juels, editors, ACM

297

https://eprint.iacr.org/2018/553

Bibliography

CCS 2005: 12th Conference on Computer and Commu-
nications Security, pages 180–189, Alexandria, Virginia,
USA, November 7–11, 2005. ACM Press.

[KY03] Jonathan Katz and Moti Yung. Scalable protocols for
authenticated group key exchange. In Dan Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 110–125,
Santa Barbara, CA, USA, August 17–21, 2003. Springer,
Heidelberg, Germany.

[Lan16] Adam Langley. Source code of Pond. https://github.
com/agl/pond, 05 2016.

[LS17] Yong Li and Sven Schäge. No-match attacks and ro-
bust partnering definitions: Defining trivial attacks for
security protocols is not trivial. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer
and Communications Security, pages 1343–1360, Dallas,
TX, USA, October 31 – November 2, 2017. ACM Press.

[MBP+19a] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Hanno Böck, Sebastian Schinzel, Juraj Somorovsky, and
Jörg Schwenk. “Johnny, you are fired!” - Spoofing
OpenPGP and S/MIME signatures in emails. In Na-
dia Heninger and Patrick Traynor, editors, USENIX Se-
curity 2019: 28th USENIX Security Symposium, pages
1011–1028, Santa Clara, CA, USA, August 14–16, 2019.
USENIX Association.

[MBP+19b] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Sebastian Schinzel, and Jörg Schwenk. Re: What’s up
johnny? - Covert content attacks on email end-to-end en-
cryption. In Robert H. Deng, Valérie Gauthier-Umaña,
Martín Ochoa, and Moti Yung, editors, ACNS 19: 17th
International Conference on Applied Cryptography and

298

https://github.com/agl/pond
https://github.com/agl/pond

Bibliography

Network Security, volume 11464 of Lecture Notes in Com-
puter Science, pages 24–42, Bogota, Colombia, June 5–7,
2019. Springer, Heidelberg, Germany.

[MBP+20] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Sebastian Schinzel, and Jörg Schwenk. Mailto: Me your
secrets. on bugs and features in email end-to-end encryp-
tion. In 8th IEEE Conference on Communications and
Network Security, CNS 2020, Avignon, France, June 29
- July 1, 2020, pages 1–9. IEEE, 2020.

[MP04] Daniele Micciancio and Saurabh Panjwani. Optimal com-
munication complexity of generic multicast key distribu-
tion. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 153–
170, Interlaken, Switzerland, May 2–6, 2004. Springer,
Heidelberg, Germany.

[MP17] Giorgia Azzurra Marson and Bertram Poettering. Secu-
rity notions for bidirectional channels. IACR Transac-
tions on Symmetric Cryptology, 2017(1):405–426, 2017.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holen-
stein. Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodol-
ogy. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes
in Computer Science, pages 21–39, Cambridge, MA,
USA, February 19–21, 2004. Springer, Heidelberg, Ger-
many.

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang.
Alternatives to non-malleability: Definitions, construc-
tions, and applications (extended abstract). In Moni
Naor, editor, TCC 2004: 1st Theory of Cryptography
Conference, volume 2951 of Lecture Notes in Computer

299

Bibliography

Science, pages 171–190, Cambridge, MA, USA, Febru-
ary 19–21, 2004. Springer, Heidelberg, Germany.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revoca-
tion and tracing schemes for stateless receivers. In Joe
Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages
41–62, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems
provably secure against chosen ciphertext attacks. In
22nd Annual ACM Symposium on Theory of Computing,
pages 427–437, Baltimore, MD, USA, May 14–16, 1990.
ACM Press.

[OTR16] Off-the-Record Messaging. http://otr.cypherpunks.
ca, 2016.

[PDM+18] Damian Poddebniak, Christian Dresen, Jens Müller,
Fabian Ising, Sebastian Schinzel, Simon Friedberger, Ju-
raj Somorovsky, and Jörg Schwenk. Efail: Breaking
S/MIME and OpenPGP email encryption using exfiltra-
tion channels. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018: 27th USENIX Security
Symposium, pages 549–566, Baltimore, MD, USA, Au-
gust 15–17, 2018. USENIX Association.

[Per17] Trevor Perrin. The noise protocol framework. http:
//noiseprotocol.org/noise.html, 2017. Revision 33.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet
algorithm. https://whispersystems.org/docs/
specifications/doubleratchet/doubleratchet.pdf,
11 2016.

300

http://otr.cypherpunks.ca
http://otr.cypherpunks.ca
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf

Bibliography

[PR18a] Bertram Poettering and Paul Rösler. Asynchronous
ratcheted key exchange. Cryptology ePrint Archive, Re-
port 2018/296, 2018. https://eprint.iacr.org/2018/
296.

[PR18b] Bertram Poettering and Paul Rösler. Towards bidirec-
tional ratcheted key exchange. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part I, volume 10991 of Lecture Notes in
Computer Science, pages 3–32, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

[PR20] Bertram Poettering and Paul Rösler. Combiners for
AEAD. IACR Transactions on Symmetric Cryptology,
2020(1):121–143, 2020.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and
Douglas Stebila. SoK: Game-based security models for
group key exchange, 2021.

[PSS+] Damian Poddebniak, Juraj Somorovsky, Sebastian
Schinzel, Manfred Lochter, and Paul Rösler. Attacking
deterministic signature schemes using fault attacks. In
2018 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018, pages 338–352. IEEE.

[RMS18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More
is less: On the end-to-end security of group chats in
Signal, WhatsApp, and Threema. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy, EuroS&P
2018, London, United Kingdom, April 24-26, 2018, pages
415–429. IEEE, 2018.

[Rog02] Phillip Rogaway. Authenticated-encryption with
associated-data. In Vijayalakshmi Atluri, editor, ACM

301

https://eprint.iacr.org/2018/296
https://eprint.iacr.org/2018/296

Bibliography

CCS 2002: 9th Conference on Computer and Communi-
cations Security, pages 98–107, Washington, DC, USA,
November 18–22, 2002. ACM Press.

[Rös15] Paul Rösler. Architektur- und sicherheitsanalyse von Tre-
sorit und Tresorit DRM. Bachelor’s thesis, Ruhr Univer-
sity Bochum, 9 2015.

[Rös18] Paul Rösler. On the end-to-end security of group chats
in instant messaging protocols. Master’s thesis, Ruhr
University Bochum, 12 2018.

[Rös19] Paul Rösler. Why receipt notifications increase security
in signal. https://web-in-security.blogspot.com/
2019/05/acks-for-security.html, 2019.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive
zero-knowledge proof of knowledge and chosen ciphertext
attack. In Joan Feigenbaum, editor, Advances in Cryptol-
ogy – CRYPTO’91, volume 576 of Lecture Notes in Com-
puter Science, pages 433–444, Santa Barbara, CA, USA,
August 11–15, 1992. Springer, Heidelberg, Germany.

[RS09] Eric Rescorla and Margaret Salter. Extended random
values for tls. Technical report, 2009.

[RZ18] Phillip Rogaway and Yusi Zhang. Simplifying game-
based definitions - indistinguishability up to correctness
and its application to stateful AE. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes
in Computer Science, pages 3–32, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Heidelberg, Ger-
many.

[Sho99] Victor Shoup. On formal models for secure key exchange.
Technical Report RZ 3120, IBM, 1999.

302

https://web-in-security.blogspot.com/2019/05/acks-for-security.html
https://web-in-security.blogspot.com/2019/05/acks-for-security.html

Bibliography

[Wei19] Matthew Weidner. Group messaging for secure asyn-
chronous collaboration. PhD thesis, MPhil Dissertation,
2019. Advisors: A. Beresford and M. Kleppmann, 2019,
2019.

[YKLH18] Zheng Yang, Mohsin Khan, Wanping Liu, and Jun He.
On security analysis of generic dynamic authenticated
group key exchange. In Secure IT Systems - 23rd Nordic
Conference, NordSec 2018, Oslo, Norway, November 28-
30, 2018, Proceedings, pages 121–137, 2018.

[YRS+09] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon En-
right, and Stefan Savage. When private keys are public:
results from the 2008 debian openssl vulnerability. In
Proceedings of the 9th ACM SIGCOMM Internet Mea-
surement Conference, IMC 2009, Chicago, Illinois, USA,
November 4-6, 2009, pages 15–27, 2009.

[ZJC11] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Me-
dia path key agreement for unicast secure RTP. RFC
6189, RFC Editor, April 2011.

303

	Contents
	Introduction
	Secure Messaging between Endpoints
	Ratcheting
	The Group Setting
	Further Contributions
	Organization

	Preliminaries
	Cryptographic Modeling
	Notation
	Cryptographic Building Blocks

	Optimally Secure Ratcheting in Two-Party Settings
	Introduction
	Key-updatable Key Encapsulation Mechanisms
	Unidirectionally ratcheted key exchange (URKE)
	Constructing URKE
	Sesquidirectionally ratcheted key exchange (SRKE)
	Constructing SRKE
	Rationales for SRKE Design
	Bidirectionally ratcheted key exchange (BRKE)
	Constructing BRKE
	Proof of URKE
	Proof of SRKE
	Proof of BRKE
	Modeling ratcheted key exchange

	Necessity of Strong Building Blocks for Optimally Secure Ratcheting
	Introduction
	Sufficient Security for Key-Updatable KEM
	Unidirectional RKE under Randomness Manipulation
	kuKEM* to URKE
	URKE to kuKEM*
	Discussion

	Communication Costs of Ratcheting in Groups
	Introduction
	Security of Concurrent Group Ratcheting
	Deficiencies of Existing Protocols
	Key-Updatable Public Key Encryption
	Intuition for Lower Bound
	Upper Bound of Communication Complexity
	Lower Bound of Communication Complexity
	Discussion

	Systematization of Models for Key Exchange in Groups
	Introduction
	Syntax Definitions
	Communication Models
	Security Definitions
	Discussion

	Conclusions and Outlook
	Overview
	Statefulness
	Defining Syntax, Correctness, and Security
	Continuous State Updates
	Asynchronicity
	Two Perspectives on Problems
	Impact

