
2021-01-07

Horst Görtz Institute for IT Security

Cryptography Group Chair for Network and Data Security

New York University Ruhr University Bochum

Resolving Concurrency in
Group Ratcheting Protocols

IACR RWC 2021

Alexander Bienstock, Yevgeniy Dodis, Paul Rösler

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 2

(Concurrent) Group Ratcheting

time

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 3

(Concurrent) Group Ratcheting

•Recovery (PCS*):

• After active exposure

• Generate new secrets

• Share public values

• Ideal protocol:

1.Quick recovery

2.Small shares

3.Concurrency

time

time

sequential

concurrent

time

time

* PCS: Post-compromise security

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 4

Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

time

Recover

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 5

Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

• Tree-based protocols

• [CCG+’18,BBR’18,ACDT’20,ACC+’19,ACJM’20,…]

time

Recover

PCS Overhead Concurrency

✔ O(log n) ✖

1 ∙ grk

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 6

Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

• Tree-based protocols

• [CCG+’18,BBR’18,ACDT’20,ACC+’19,ACJM’20,…]

• Merging paths without PCS [Weidner’19]

• IETF Messaging Layer Security (MLS) propose-then-commit

• Alternatives

• Forward-secure hash chain [WhatsApp]

• Parallel pair-wise communication [Signal,WKHB’20]

time

Recover

n2 ∙ ki,j

n ∙ ki,G

PCS Overhead Concurrency

✔ O(log n) ✖

(✖) O(log n) ✔

(✔) O(n) (✔)

✖ O(1) ✔

✔ O(n) ✔

1 ∙ grk

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 7

Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

• Tree-based protocols

• [CCG+’18,BBR’18,ACDT’20,ACC+’19,ACJM’20,…]

• Merging paths without PCS [Weidner’19]

• IETF Messaging Layer Security (MLS) propose-then-commit

• Alternatives

• Forward-secure hash chain [WhatsApp]

• Parallel pair-wise communication [Signal,WKHB’20]

• Is this trade-off inherent?
• Minimal communication overhead when t users recover (PCS) concurrently?

• Group ratcheting protocol that reaches this minimum?

time

Recover

n2 ∙ ki,j

n ∙ ki,G

PCS Overhead Concurrency

✔ O(log n) ✖

(✖) O(log n) ✔

(✔) O(n) (✔)

✖ O(1) ✔

✔ O(n) ✔

✔ ? ✔

1 ∙ grk

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 8

Theoretically Minimal Overhead: Ω(t)

Round-based, Symbolic model

• Full asynchrony ⇒ worse overhead

• Fixed computation rules, no bit representation

• Models building blocks covering all tools used so far
→ Dual PRFs, Broadcast encryption, HIBE, …

• Excludes exotic tools (e.g., multi-party NIKE)

We prove for any protocol in this model …

• … combining these building blocks arbitrarily …

• … to handle t concurrent recoveries …

• … every recovery message contains Ω(t) distinct shares

• Proof idea: Each user must reply individually to last round’s
shares
→ Preparation useless

Protocol: O(t+t∙log(n/t))

Our Results*: t-Concurrency

* Bienstock, Dodis, Rösler: On the Price of Concurrency

in Group Ratcheting Protocols, TCC ‘20 → RWC ‘21

time

…

…

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 9

Theoretically Minimal Overhead: Ω(t)

Round-based, Symbolic model

• Full asynchrony ⇒ worse overhead

• Fixed computation rules, no bit representation

• Models building blocks covering all tools used so far
→ Dual PRFs, Broadcast encryption, HIBE, …

• Excludes exotic tools (e.g., multi-party NIKE)

We prove for any protocol in this model …

• … combining these building blocks arbitrarily …

• … to handle t concurrent recoveries …

• … every recovery message contains Ω(t) distinct shares

• Proof idea: Each user must reply individually to last round’s
shares
→ Preparation useless

Protocol: O(t+t∙log(n/t))

1. Users only heal their leaf secret
when sending (not full path)
→ O(t)

2. … and help previous senders by
healing remaining path secrets
→ O(log(n/t)) per sender in last round

Concurrent recovery ✔

Our Results*: t-Concurrency

time

Yes, this trade-off is inherent (lower bound),

but not as bad as it seemed (upper bound).

pka ska pkb skb pkc skc pkd skd

pkabcd skabcd

pkcd skcdpkab skab

pkc skc

pkcd skcd

pkabcd skabcd

pkb skb

pkab skab

* Bienstock, Dodis, Rösler: On the Price of Concurrency

in Group Ratcheting Protocols, TCC ‘20 → RWC ‘21

…

…

Resolving Concurrency in Group Ratcheting Protocols IACR RWC 2021 | Paul Rösler | 2021-01-07 10

• Great support from industry

• Pushed academic research

• Scalable performance with reasonable security

Propose-then-commit recovery:

• Reveals meta data

→ Type and context of messages (direct vs. group; which group)

→ Coordination (propose vs. commit for recovery)

• Server coordinates recovery

→ Federated settings

Our solutions:

• Hides meta data

→ All messages look identical (except for size → use padding)

→ No active coordination (only round scheduling)

• Steps towards avoiding central services

→ Active coordination to round scheduling

MLS: Success and Open Problems

Remaining questions:

• Equip our protocol with practical features
(dynamic groups, malicious insiders, etc.)

• Only rely on message delivery (= no central
service needed)

• Determine further fundamental limits of
group ratcheting

• …

→

→

@roeslpa

Full details & formal

proofs: ia.cr/2020/1171

PCS Overhead (t-concurrency) Concurrency

✔ O(log n) ✖

✔ O(n) ✔

✔ Ω(t) < x < O(t+t∙log(n/t)) ✔

