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(Concurrent) Group Ratcheting

time
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(Concurrent) Group Ratcheting

•Recovery (PCS*):

• After active exposure

• Generate new secrets

• Share public values

• Ideal protocol:

1.Quick recovery

2.Small shares

3.Concurrency

time

time

sequential

concurrent

time

time

* PCS: Post-compromise security
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Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

time

Recover
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• Tree-based protocols
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Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

• Tree-based protocols

• [CCG+’18,BBR’18,ACDT’20,ACC+’19,ACJM’20,…]

• Merging paths without PCS [Weidner’19]

• IETF Messaging Layer Security (MLS) propose-then-commit

• Alternatives

• Forward-secure hash chain [WhatsApp]

• Parallel pair-wise communication [Signal,WKHB’20]
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Previous Work: What’s the Problem?

• Most promising idea: tree-based

• Users: leaves

• Secrets: nodes on path to root

• Group key: root

• Recovery: update secrets on path

• Tree-based protocols

• [CCG+’18,BBR’18,ACDT’20,ACC+’19,ACJM’20,…]

• Merging paths without PCS [Weidner’19]

• IETF Messaging Layer Security (MLS) propose-then-commit

• Alternatives

• Forward-secure hash chain [WhatsApp]

• Parallel pair-wise communication [Signal,WKHB’20]

• Is this trade-off inherent?
• Minimal communication overhead when t users recover (PCS) concurrently?

• Group ratcheting protocol that reaches this minimum?
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Theoretically Minimal Overhead: Ω(t) 

Round-based, Symbolic model

• Full asynchrony ⇒ worse overhead

• Fixed computation rules, no bit representation

• Models building blocks covering all tools used so far
→ Dual PRFs, Broadcast encryption, HIBE, …

• Excludes exotic tools (e.g., multi-party NIKE)

We prove for any protocol in this model …

• … combining these building blocks arbitrarily …

• … to handle t concurrent recoveries …

• … every recovery message contains Ω(t) distinct shares

• Proof idea: Each user must reply individually to last round’s 
shares
→ Preparation useless

Protocol: O(t+t∙log(n/t)) 

Our Results*: t-Concurrency

* Bienstock, Dodis, Rösler: On the Price of Concurrency 

in Group Ratcheting Protocols, TCC ‘20  → RWC ‘21

time
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Theoretically Minimal Overhead: Ω(t) 

Round-based, Symbolic model

• Full asynchrony ⇒ worse overhead

• Fixed computation rules, no bit representation

• Models building blocks covering all tools used so far
→ Dual PRFs, Broadcast encryption, HIBE, …

• Excludes exotic tools (e.g., multi-party NIKE)

We prove for any protocol in this model …

• … combining these building blocks arbitrarily …

• … to handle t concurrent recoveries …

• … every recovery message contains Ω(t) distinct shares

• Proof idea: Each user must reply individually to last round’s 
shares
→ Preparation useless

Protocol: O(t+t∙log(n/t)) 

1. Users only heal their leaf secret 
when sending (not full path)
→ O(t)

2. … and help previous senders by 
healing remaining path secrets
→ O(log(n/t)) per sender in last round

Concurrent recovery ✔

Our Results*: t-Concurrency

time

Yes, this trade-off is inherent (lower bound),

but not as bad as it seemed (upper bound).
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in Group Ratcheting Protocols, TCC ‘20  → RWC ‘21
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• Great support from industry

• Pushed academic research

• Scalable performance with reasonable security

Propose-then-commit recovery:

• Reveals meta data

→ Type and context of messages (direct vs. group; which group)

→ Coordination (propose vs. commit for recovery)

• Server coordinates recovery

→ Federated settings

Our solutions:

• Hides meta data

→ All messages look identical (except for size → use padding)

→ No active coordination (only round scheduling)

• Steps towards avoiding central services

→ Active coordination to round scheduling

MLS: Success and Open Problems

Remaining questions:

• Equip our protocol with practical features 
(dynamic groups, malicious insiders, etc.)

• Only rely on message delivery (= no central 
service needed)

• Determine further fundamental limits of 
group ratcheting

• …

→

→

@roeslpa

Full details & formal 

proofs: ia.cr/2020/1171

PCS Overhead (t-concurrency) Concurrency

✔ O(log n) ✖

✔ O(n) ✔

✔ Ω(t) < x < O(t+t∙log(n/t)) ✔


