Towards Bidirectional Ratcheted Key Exchange

CRYPTO 2018

2018-08-20

Information Security Group

Royal Holloway, University of London Bertram Poettering Horst Görtz Institute for IT Security Chair for Network and Data Security Ruhr University Bochum Paul Rösler

RUB

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- Alice and Bob communicate
- Active adversary

- Alice and Bob communicate
- Active adversary

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed
- Practical protocols w/o precise security definition
 - E.g., Signal 🤇

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed
- Practical protocols w/o precise security definition
 - E.g., Signal 🤇

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed
- Practical protocols w/o precise security definition
 - E.g., Signal 🤇

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed
- Practical protocols w/o precise security definition
 - E.g., Signal 🤇

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed
- Practical protocols w/o precise security definition
 - E.g., Signal 🤇

- Alice and Bob communicate
- Active adversary
- Long term communication
 - Local (full) state temporarily exposed

- Natural security notion
 - Definition based only on trivial attacks
 - Bellare et al. on unidirectional communication C'17
 - Bob cannot be exposed

Natural Security Notion for Ratcheting?

- Natural security notion
 - Definition based only on trivial attacks
 - Bellare et al. on unidirectional communication C'17
 - Bob cannot be exposed

Our models require and constructions provide *full* security under:

- Asynchronous
 communication
- Exposure of both parties

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction

5. Results

Natural Security Notion for Ratcheting? Modeling RKE **Construction Intuition** Natural security notion Definition based only on trivial attacks • Syntax: Hey Bob! ♡ Hey Bob! ♡ Initialization Love you ♡ Darling? Love you ♡ Darling? 1 year later? later? That's a secret! secret! That's

Towards Bidirectional Ratcheted Key Exchange CRYPTO 2018 | Paul Rösler | Santa Barbara | 2018-08-20

• What is Ratcheting?

Results

Natural Security Notion for Ratcheting?

- Natural security notion
 - Definition based only on trivial attacks
- Syntax:
 - Initialization

- Natural security notion
 - Definition based only on trivial attacks
- Syntax:
 - Initialization
 - Sending & receiving

- Natural security notion
 - Definition based only on trivial attacks
- Syntax:
 - Initialization
 - Sending & receiving

- Natural security notion
 - Definition based only on trivial attacks
- Syntax:
 - Initialization
 - Sending & receiving
 - Key exchange
 - Consecutive establishment of keys in session
 - *≠ Authenticated key* exchange!

- Natural security notion
 - Definition based only on trivial attacks
- Syntax:
 - Initialization
 - Sending & receiving
 - Key exchange
 - Composition in Bellare et al. C'17

Three Variants of Ratcheting

- Bidirectional ratcheting is complicated
- \rightarrow Understand its components

 k_{A3}

Three Variants of Ratcheting

- Bidirectional ratcheting is complicated
- \rightarrow Understand its components:
 - Unidirectional key establishment

 k_{A3}

Three Variants of Ratcheting

- Bidirectional ratcheting
 is complicated
- → Understand its components:
 - Unidirectional key establishment
 - Alice initiates computation of new key
 - Bob does not respond

rc\

Three Variants of Ratcheting

- Bidirectional ratcheting
 is complicated
- → Understand its components:
 - Unidirectional ratcheted key exchange (RKE)

Three Variants of Ratcheting

- Bidirectional ratcheting is complicated
- → Understand its components:
 - Unidirectional RKE
 - Sesquidirectional RKE
 - Bob contributes (but cannot establish keys)
 - Adds security

(sesqui = 1.5)

Three Variants of Ratcheting

- Bidirectional ratcheting is complicated
- → Understand its components:
 - Unidirectional RKE
 - Sesquidirectional RKE
 - Symmetric roles

Three Variants of Ratcheting

- Bidirectional ratcheting is complicated
- → Understand its components:
 - Unidirectional RKE
 - Sesquidirectional RKE
 - Symmetric roles
 - Bidirectional RKE
 = 2x Sesquid. RKE
 (extended version)

Three Variants of Ratcheting

Unidirectional RKE (+ Exposure of Bob)

from Bob

Sesquidirectional RKE

init

Bidirectional RKE

init

snc

snc

sno

k_{A1}

 k_{A2}

k_{B1} -

 k_{A3}

rcv k_{A1}

rcv k_{A2}

rcv k_{A3}

snd

Bob's responses only help to recover Symmetric roles (extended version)

rcv k_{A1}

snd **k**_{B1}

rcv k_{A2}

rcv k_{A3}

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction

5. Results

29

What is Ratcheting?Modeling RKE Construction Intuition Results

- Active adversary
 - Control whole network traffic

- Active adversary
 - Control whole network traffic
- Analyze key indistinguishability
 - Multi-challenge real or random key
 - \rightarrow Guess bit $b \in \{0,1\}$

- Active adversary
 - Control whole network
 traffic
- Analyze key
 indistinguishability
 - Multi-challenge real or random key
- Model exposures
 of local state

- Active adversary
 - Control whole network
 traffic
- Analyze key indistinguishability
 - Multi-challenge real or random key
- Model exposures of local state
- Single session
- Init abstracted

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction

5. Results

Modeling Unidirectional RKE

35

What is Ratcheting?Modeling RKE Construction Intuition Results

Modeling Unidirectional RKE

Impersonation
 ⇒ No future Challenge
 on Bob

Modeling Unidirectional RKE

- Impersonation \Rightarrow No future Challenge on Bob
- Expose Bob \rightarrow Allowed in our model

Modeling Unidirectional RKE

- Impersonation
 ⇒ No future Challenge
 on Bob
- Expose Bob
 ⇒ No future Challenge

Modeling Unidirectional RKE

- Impersonation
 ⇒ No future Challenge
 on Bob
- Expose Bob

 ⇒ No future Challenge
 if synchronous
 (= if no previous
 active attack)

rcv k_{A1}

rcv k_{A2}

rc\

What is Ratcheting? Modeling RKE **Construction Intuition** Results

Modeling Unidirectional RKE

 k_{A1}

snd

- Impersonation \Rightarrow No future Challenge on Bob
- Expose Bob \Rightarrow No future Challenge if synchronous
- \Rightarrow Exposure of Alice (solely) "okay"

init

Adversary

Modeling Unidirectional RKE

- Impersonation \Rightarrow No future Challenge on Bob
- Expose Bob \Rightarrow No future Challenge if synchronous
- \Rightarrow Exposure of Alice (solely) "okay"

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction

5. Results

- Expose Alice okay \rightarrow Public key crypto
- Expose Bob \Rightarrow No future Challenge if synchronous

Results

Results

- Expose Alice okay \rightarrow KEM: enc(pk) \rightarrow_s c k dec(sk c) \rightarrow_s k
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 - → Forward secrecy of Bob's state

Results

- Expose Alice okay \rightarrow KEM: enc(pk) \rightarrow_s c k dec(sk c) \rightarrow_s k
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 - → Forward secrecy of Bob's state
 - \rightarrow Divergence of states

Results

Constructing Unidirectional RKE

 k_{A1}

 k_{A2}

 k_{A3}

- Expose Alice okay \rightarrow KEM: enc(pk) \rightarrow_s c k dec(sk c) \rightarrow_s k
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 - → Forward secrecy of Bob's state
 - \rightarrow Divergence of states
 - \rightarrow Random oracle:

Results

Constructing Unidirectional RKE

- Expose Alice okay \rightarrow KEM: enc(pk) \rightarrow_s c k dec(sk c) \rightarrow_s k
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 - → Forward secrecy of Bob's state
 - \rightarrow Divergence of states
 - \rightarrow Random oracle:

Towards Bidirectional Ratcheted Key Exchange CRYPTO 2018 | Paul Rösler | Santa Barbara | 2018-08-20

Results

Constructing Unidirectional RKE

- Expose Alice okay \rightarrow KEM: enc(pk) \rightarrow_s c k dec(sk c) \rightarrow_s k
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 - → Forward secrecy of Bob's state
 - \rightarrow Divergence of states
 - \rightarrow Random oracle:

Towards Bidirectional Ratcheted Key Exchange CRYPTO 2018 | Paul Rösler | Santa Barbara | 2018-08-20

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting
 - \rightarrow Model and Construction

5. Results

Modeling Unidirectional RKE

- Impersonation A → B
 ⇒ No future Challenge
 on Bob
- Expose Bob
 ⇒ No future Challenge
 if synchronous

- Impersonation $A \rightarrow B$ \Rightarrow No future Challenge on Bob
- Expose Bob \Rightarrow No future Challenge if synchronous

- Impersonation A → B ⇒ No future Challenge on Bob
- Impersonation B → A
 ⇒ No future Challenge on Alice
- Expose Bob
 ⇒ No future Challenge
 if synchronous

- Impersonation A → B
 ⇒ No future Challenge
 on Bob
- Impersonation B → A
 ⇒ No future Challenge on Alice
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered

- Impersonation A → B
 ⇒ No future Challenge
 on Bob
- Impersonation B → A
 ⇒ No future Challenge on Alice
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered

- Impersonation A → B
 ⇒ No future Challenge
 on Bob
- Impersonation B → A
 ⇒ No future Challenge on Alice
- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction

5. Results

Constructing Sesquidirectional RKE

Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 → Send new pk

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 - \rightarrow Send new pk \rightarrow Divergence of states

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 - \rightarrow Send new pk \rightarrow Divergence of states

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 → Send new pk
 - \rightarrow Divergence of states \rightarrow Update key pair

Results

Constructing Sesquidirectional RKE

snd

- Expose Bob \Rightarrow No future Challenge if synchronous until Bob recovered
 - \rightarrow Forward secrecy and recovery of Bob's state
 - \rightarrow Send new pk
 - \rightarrow Divergence of states \rightarrow Update key pair

 k_{A1}

 k_{A2}

 k_{A3}

Results

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 - \rightarrow Send new pk
 - \rightarrow Divergence of states \rightarrow Update key pair

Results

Constructing Sesquidirectional RKE

- Expose Bob
 ⇒ No future Challenge
 if synchronous
 until Bob recovered
 - → Forward secrecy and recovery of Bob's state
 - \rightarrow Send new pk \rightarrow Divergence of states
 - \rightarrow Update key pair

Towards Bidirectional Ratcheted Key Exchange CRYPTO 2018 | Paul Rösler | Santa Barbara | 2018-08-20

Agenda

- 1. The Primitive Ratcheted Key Exchange
- 2. General Adversary Model
- 3. Unidirectional Ratcheting \rightarrow Model and Construction
- 4. Sesquidirectional Ratcheting \rightarrow Model and Construction
- 5. Results

- Unidirectional RKE
 - KEM + ROM (+ MAC)

ia.cr/2018/296 (ext. version)

Towards Bidirectional Ratcheted Key Exchange CRYPTO 2018 | Paul Rösler | Santa Barbara | 2018-08-20

- Unidirectional RKE
 - KEM + ROM (+ MAC)
- Sesquidirectional RKE
 - Key updatable KEM (+ signatures)
 - # up (sk T) = #crossing ciphertexts
 - \rightarrow Depth of HIBE practically bounded

@roeslpa

ia.cr/2018/296 (ext. version)

- Unidirectional RKE
 - KEM + ROM (+ MAC)
- Sesquidirectional RKE
 - Key updatable KEM (+ signatures)
 - # up (sk T) = #crossing ciphertexts
 → Depth of HIBE practically bounded
 - Multi encapsulation
 - \rightarrow Bounded in ping-pong pattern
 - \rightarrow Alternative: key updatable signatures

@roeslpa

ia.cr/2018/296 (ext. version)

- Unidirectional RKE
 - KEM + ROM (+ MAC)
- Sesquidirectional RKE
 - Key updatable KEM (+ signatures)
 - # up (sk T) = #crossing ciphertexts
 → Depth of HIBE practically bounded
 - Multi encapsulation
 - \rightarrow Bounded in ping-pong pattern
 - \rightarrow Alternative: key updatable signatures
- BRKE = 2x SRKE + OT signatures
 → Build SRKE, BRKE too complex!

ia.cr/2018/296 (ext. version)

@roeslpa

rcv kas